Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
import torch
from ops.dcn import DeformConvPack # Needs dcn module from https://github.com/open-mmlab/mmdetection
torch.manual_seed(0)
def check_grad():
device = torch.device('cuda')
conv_full = DeformConvPack(in_channels=4,
out_channels=4,
kernel_size=(3, 3),
padding=1,
groups=1,
stride=1).to(device)
conv_group = DeformConvPack(in_channels=4,
out_channels=4,
kernel_size=(3, 3),
padding=1,
groups=4,
stride=1).to(device)
# Initialization with zero-padded kernels
with torch.no_grad():
new_weight = torch.zeros_like(conv_full.weight)
idx = [i for i in range(conv_full.weight.shape[1])]
new_weight[idx, idx, :, :] = conv_group.weight[idx, 0, :, :]
conv_full.weight = torch.nn.Parameter(new_weight)
x = torch.ones(1, 4, 5, 5).to(device)
x[:, :, 3, 2] = 2
y = torch.ones(1, 4, 5, 5).to(device) * 0.1
loss_fn = torch.nn.MSELoss(reduction='sum').to(device)
learning_rate = 1e-4
optim_full = torch.optim.Adam(conv_full.parameters(), lr=learning_rate)
optim_group = torch.optim.Adam(conv_group.parameters(), lr=learning_rate)
epochs = 100
for i in range(epochs):
print(f"\nEpoch {i:02d}")
# Forward pass
y_pred_full = conv_full(x)
y_pred_group = conv_group(x)
print(f"Predictions are same: {torch.allclose(y_pred_full, y_pred_group)}")
# Compute loss
loss_full = loss_fn(y_pred_full, y)
loss_group = loss_fn(y_pred_group, y)
optim_full.zero_grad()
optim_group.zero_grad()
# Backward pass
loss_full.backward()
loss_group.backward()
# Zero out conv full gradients
with torch.no_grad():
grad = conv_full.weight.grad.clone()
conv_full.weight.grad.zero_()
idx = [i for i in range(conv_full.weight.shape[1])]
conv_full.weight.grad[idx, idx, :, :] = grad[idx, idx, :, :]
# Check if gradients of conv_full and conv_group are the same
for i in range(conv_full.weight.shape[1]):
conv_full_grad_i = conv_full.weight.grad[i, i, :, :]
conv_group_grad_i = conv_group.weight.grad[i, 0, :, :]
is_equal = torch.allclose(conv_full_grad_i, conv_group_grad_i)
print(f"Grads in {i}-th channels are same: {is_equal}")
# Update parameters
optim_full.step()
optim_group.step()
if __name__ == "__main__":
check_grad()
@palver7
Copy link

palver7 commented Dec 8, 2020

Hi @MauroPfister, I downloaded this script and changed the mmlab dcn to pytorch dcn but I got all results false as you can see in this screenshot :

gradtestfailed

Can you help me figure out why I get this result ? You said in a pytorch discussion forum that your hack produced almost the same values as the normal method but faster, I would like to reproduce it using PyTorch's own Deformable Convolution.

@MauroPfister
Copy link
Author

MauroPfister commented Dec 8, 2020

Hi @palver7, as far as I see Pytorch does not have an equivalent for DeformConvPack which includes the calculation of the offset tensor. I assume you are using DeformConv2d from torchvision.ops and create another Conv2d for the calculation of the offset? If so, are you sure your offset calculation matches the one in DeformConvPack?

Also, did you check if the two predictions are completely different or if they are simply different enough to produce False with the default values of torch.allclose?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment