Created
May 18, 2017 15:35
-
-
Save MaxHalford/9bfaa8daf8b4bc17a7fb7ba58c880675 to your computer and use it in GitHub Desktop.
Keras fit/predict scikit-learn pipeline
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from keras import backend as K | |
from keras import callbacks | |
from keras import layers | |
from keras import models | |
from keras.wrappers.scikit_learn import KerasClassifier | |
import pandas as pd | |
import tensorflow as tf | |
from sklearn import metrics | |
from sklearn import pipeline | |
from sklearn import preprocessing | |
from sklearn.externals import joblib | |
# Load data | |
X_train = pd.read_csv('data/X_train.csv') | |
y_train = pd.read_csv('data/y_train.csv')['is_listened'] | |
# Use Tenserflow backend | |
sess = tf.Session() | |
K.set_session(sess) | |
def model(): | |
model = models.Sequential([ | |
layers.Dense(64, input_dim=X_train.shape[1], activation='relu'), | |
layers.Dropout(0.5), | |
layers.Dense(64, activation='relu'), | |
layers.Dropout(0.5), | |
layers.Dense(1, activation='sigmoid') | |
]) | |
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) | |
return model | |
early_stopping = callbacks.EarlyStopping(monitor='val_loss', patience=1, verbose=0, mode='auto') | |
pipe = pipeline.Pipeline([ | |
('rescale', preprocessing.StandardScaler()), | |
('nn', KerasClassifier(build_fn=model, nb_epoch=10, batch_size=128, | |
validation_split=0.2, callbacks=[early_stopping])) | |
]) | |
pipe.fit(X_train.values, y_train.values) | |
directory = os.path.dirname(os.path.realpath(__file__)) | |
model_step = pipe.steps.pop(-1)[1] | |
joblib.dump(pipe, os.path.join(directory, 'pipeline.pkl')) | |
models.save_model(model_step.model, os.path.join(directory, 'model.h5')) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from keras import models | |
import pandas as pd | |
from sklearn.externals import joblib | |
X_test = pd.read_csv('data/X_test.csv') | |
y_test = pd.read_csv('data/y_test.csv') | |
directory = os.path.dirname(os.path.realpath(__file__)) | |
pipe = joblib.load(os.path.join(directory, 'pipeline.pkl')) | |
model = models.load_model(os.path.join(directory, 'model.h5')) | |
pipe.steps.append(('nn', model)) | |
pred = pipe.predict_proba(X_test)[:, 0] | |
submission = pd.DataFrame(data={ | |
'sample_id': y_test['sample_id'].astype(int), | |
'is_listened': pred | |
}).sort_values('sample_id') | |
submission.to_csv(os.path.join(directory, 'submission_keras.csv'), index=False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi may I ask if I have like 10 classes how can I fit the np.utils.to_categorical into the pipeline?