Skip to content

Instantly share code, notes, and snippets.

@MechCoder
Last active March 28, 2016 04:26
Show Gist options
  • Save MechCoder/9085295de7da15c5a188 to your computer and use it in GitHub Desktop.
Save MechCoder/9085295de7da15c5a188 to your computer and use it in GitHub Desktop.
# coding: utf-8
# Predicting the Behavior of the Supreme Court of the United States: A General Approach
# ==================
# * __Title__: Predicting the Behavior of the Supreme Court of the United States: A General Approach
# * __Authors__: [Daniel Martin Katz](http://www.law.msu.edu/faculty_staff/profile.php?prof=780), [Michael J Bommarito II](http://bommaritollc.com/), [Josh Blackman](http://joshblackman.com)
# * __Paper URL__: [http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2463244](http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2463244)
# * __Blog URL__: [http://lexpredict.com/portfolio/predicting-the-supreme-court/](http://lexpredict.com/portfolio/predicting-the-supreme-court/)
#
# ## Paper Abstract
# Building upon developments in theoretical and applied machine learning, as well as the efforts of various scholars including Guimera and Sales-Pardo (2011), Ruger et al. (2004), and Martin et al. (2004), we construct a model designed to predict the voting behavior of the Supreme Court of the United States. Using the extremely randomized tree method first proposed in Geurts, et al. (2006), a method similar to the random forest approach developed in Breiman (2001), as well as novel feature engineering, we predict more than sixty years of decisions by the Supreme Court of the United States (1953-2013). Using only data available prior to the date of decision, our model correctly identifies 69.7% of the Court’s overall affirm/reverse decisions and correctly forecasts 70.9% of the votes of individual justices across 7,700 cases and more than 68,000 justice votes. Our performance is consistent with the general level of prediction offered by prior scholars. However, our model is distinctive as it is the first robust, generalized,and fully predictive model of Supreme Court voting behavior offered to date. Our model predicts six decades of behavior of thirty Justices appointed by thirteen Presidents. With a more sound methodological foundation, our results represent a major advance for the science of quantitative legal prediction and portend a range of other potential applications, such as those described in Katz (2013).
#
# ## Source Description
# The source and data in this repository allow for the reproduction of the results in this paper.
#
# ## Data Description
# The data used in this paper is available from the [Supreme Court Database (SCDB)](http://scdb.wustl.edu/).
#
# ## Version
# The latest version of this model was relesed in October 2015.
# In[1]:
# get_ipython().magic('matplotlib inline')
# Imports
import matplotlib.pyplot as plt
import statsmodels.stats.proportion
# seaborn
import seaborn
seaborn.set()
seaborn.set_style("darkgrid")
# Project imports
from model import *
# In[2]:
# Get raw data
raw_data = get_raw_scdb_data("data/input/SCDB_2015_01_justiceCentered_Citation.csv")
# Get feature data
feature_df = preprocess_raw_data(raw_data, include_direction=True)
# In[3]:
# Output some diagnostics on features
print(raw_data.shape)
print(feature_df.shape)
assert(raw_data.shape[0] == feature_df.shape[0])
# In[4]:
# Output basic quantities for sample
ind = raw_data["justice_outcome_disposition"] == -1
raw_data = raw_data[~ind]
print(pandas.DataFrame(raw_data["justice_outcome_disposition"].value_counts()))
print(pandas.DataFrame(raw_data["justice_outcome_disposition"].value_counts(normalize=True)))
# In[5]:
# Setup training time period
min_training_years = 5
term_range = range(raw_data["term"].min() + min_training_years,
raw_data["term"].max()+1)
# Setting growing random forest parameters
# Number of trees to grow per term
trees_per_term = 20
# Number of trees to begin with
initial_trees = min_training_years * trees_per_term
# Number of years between "forest fires"
reset_interval = 9999
# Setup model
m = None
term_count = 0
for term in term_range:
# Diagnostic output
print("Term: {0}".format(term))
term_count += 1
# Setup train and test periods
train_index = (raw_data.loc[:, "term"] < term).values
test_index = (raw_data.loc[:, "term"] == term).values
# Setup train data
feature_data_train = feature_df.loc[train_index, :]
target_data_train = raw_data.loc[train_index, "justice_outcome_disposition"].astype(int).values
# Setup test data
feature_data_test = feature_df.loc[test_index, :]
target_data_test = raw_data.loc[test_index, "justice_outcome_disposition"].astype(int).values
# Check if we should rebuild the model based on changing natural court
if term_count % reset_interval == 0:
# "Forest fire;" grow a new forest from scratch
print("Reset interval hit; rebuilding with {0} trees".format(initial_trees + (term_count * trees_per_term)))
m = None
else:
# Check if the justice set has changed
if set(raw_data.loc[raw_data.loc[:, "term"] == (term-1), "justice"].unique()) != set(raw_data.loc[raw_data.loc[:, "term"] == (term), "justice"].unique()):
# natural Court change; trigger forest fire
print("Natural court change; rebuilding with {0} trees".format(initial_trees + (term_count * trees_per_term)))
m = None
# Build or grow a model depending on initial/reset condition
if not m:
# Grow an initial forest
m = sklearn.ensemble.RandomForestClassifier(n_estimators=initial_trees + (term_count * trees_per_term),
class_weight="balanced_subsample",
warm_start=True,
n_jobs=-1)
else:
# Grow the forest by increasing the number of trees (requires warm_start=True)
m.set_params(n_estimators=initial_trees + (term_count * trees_per_term))
# Fit the forest model
m.fit(feature_data_train,
target_data_train)
# Fit the "dummy" model
d = sklearn.dummy.DummyClassifier(strategy="most_frequent")
d.fit(feature_data_train, target_data_train)
# Perform forest predictions
raw_data.loc[test_index, "rf_predicted"] = m.predict(feature_data_test)
# Store scores per class
scores = m.predict_proba(feature_data_test)
raw_data.loc[test_index, "rf_predicted_score_other"] = scores[:, 0]
raw_data.loc[test_index, "rf_predicted_score_affirm"] = scores[:, 1]
raw_data.loc[test_index, "rf_predicted_score_reverse"] = scores[:, 2]
# Store dummy predictions
raw_data.loc[test_index, "dummy_predicted"] = d.predict(feature_data_test)
# # In[6]:
# # Evaluation range
evaluation_index = raw_data.loc[:, "term"].isin(term_range)
target_actual = raw_data.loc[evaluation_index, "justice_outcome_disposition"]
target_predicted = raw_data.loc[evaluation_index, "rf_predicted"]
target_dummy = raw_data.loc[evaluation_index, "dummy_predicted"]
raw_data.loc[:, "rf_correct"] = numpy.nan
raw_data.loc[:, "dummy_correct"] = numpy.nan
raw_data.loc[evaluation_index, "rf_correct"] = (target_actual == target_predicted).astype(float)
raw_data.loc[evaluation_index, "dummy_correct"] = (target_actual == target_dummy).astype(float)
# Compare model
print("RF model")
print("="*32)
print(sklearn.metrics.classification_report(target_actual, target_predicted))
print(sklearn.metrics.confusion_matrix(target_actual, target_predicted))
print(sklearn.metrics.accuracy_score(target_actual, target_predicted))
print("="*32)
print("")
# Dummy model
print("Dummy model")
print("="*32)
print(sklearn.metrics.classification_report(target_actual, target_dummy))
print(sklearn.metrics.confusion_matrix(target_actual, target_dummy))
print(sklearn.metrics.accuracy_score(target_actual, target_dummy))
print("="*32)
print("")
# In[7]:
# Setup time series
rf_correct_ts = raw_data.loc[evaluation_index, :].groupby("term")["rf_correct"].mean()
dummy_correct_ts = raw_data.loc[evaluation_index, :].groupby("term")["dummy_correct"].mean()
# Plot all accuracies
f = plt.figure(figsize=(16, 12))
plt.plot(rf_correct_ts.index, rf_correct_ts,
marker='o', alpha=0.75)
plt.plot(dummy_correct_ts.index, dummy_correct_ts,
marker='>', alpha=0.75)
plt.legend(('Random forest', 'Dummy'))
# In[8]:
# Setup time series
rf_spread_ts = rf_correct_ts - dummy_correct_ts
# Plot all accuracies
f = plt.figure(figsize=(16, 12))
plt.bar(rf_spread_ts.index, rf_spread_ts,
alpha=0.75)
plt.xlabel("Term")
plt.ylabel("Spread (%)")
plt.title("Spread over dummy model for justice accuracy")
# In[9]:
# Feature importance
feature_importance_df = pandas.DataFrame(zip(feature_df.columns, m.feature_importances_),
columns=["feature", "importance"])
feature_importance_df.sort_values(["importance"], ascending=False).head(10)
# In[10]:
# Output stats
print("t-test:")
print("Uncalibrated:")
print(scipy.stats.ttest_rel(rf_correct_ts.values,
dummy_correct_ts.values))
print("=" * 16)
print("ranksum-test:")
print("Uncalibrated:")
print(scipy.stats.ranksums(rf_correct_ts.values,
dummy_correct_ts.values))
print("=" * 16)
print("Binomial:")
print(statsmodels.stats.proportion.binom_test(raw_data.loc[evaluation_index, "rf_correct"].sum(),
raw_data.loc[evaluation_index, "rf_correct"].shape[0],
raw_data.loc[evaluation_index, "dummy_correct"].mean(),
alternative="larger"))
# ## Case Outcomes
# In[11]:
# Get case-level prediction
#scdb_data.loc[evaluation_index, "rf_predicted_case"] =
rf_predicted_case = pandas.DataFrame(raw_data.loc[evaluation_index, :] .groupby(["docketId"])["rf_predicted"] .agg(lambda x: x.value_counts().index[0]))
rf_predicted_case.columns = ["rf_predicted_case"]
dummy_predicted_case = pandas.DataFrame(raw_data.loc[evaluation_index, :] .groupby(["docketId"])["dummy_predicted"] .agg(lambda x: x.value_counts().index[0]))
dummy_predicted_case.columns = ["dummy_predicted_case"]
# Set DFs
rf_predicted_case = raw_data[["docketId", "case_outcome_disposition", "rf_predicted"]].join(rf_predicted_case, on="docketId")
dumy_predicted_case = raw_data[["docketId", "dummy_predicted"]].join(dummy_predicted_case, on="docketId")
raw_data.loc[:, "rf_predicted_case"] = rf_predicted_case
raw_data.loc[:, "dummy_predicted_case"] = dumy_predicted_case
# In[12]:
# Output case distribution
case_outcomes = raw_data.groupby(["docketId"])["case_outcome_disposition"].agg(lambda x: x.mode())
case_outcomes = case_outcomes.apply(lambda x: int(x) if type(x) in [numpy.float64] else None)
print(case_outcomes.value_counts())
print(case_outcomes.value_counts(normalize=True))
# In[13]:
# Output comparison
# Evaluation range
evaluation_index = raw_data.loc[:, "term"].isin(term_range) & -raw_data.loc[:, "case_outcome_disposition"].isnull()
target_actual = raw_data.loc[evaluation_index, "case_outcome_disposition"]
target_predicted = raw_data.loc[evaluation_index, "rf_predicted_case"]
target_dummy = raw_data.loc[evaluation_index, "dummy_predicted_case"]
raw_data.loc[:, "rf_correct_case"] = numpy.nan
raw_data.loc[:, "dummy_correct_case"] = numpy.nan
raw_data.loc[evaluation_index, "rf_correct_case"] = (target_actual == target_predicted).astype(float)
raw_data.loc[evaluation_index, "dummy_correct_case"] = (target_actual == target_dummy).astype(float)
# Compare model
print("RF model")
print("="*32)
print(sklearn.metrics.classification_report(target_actual, target_predicted))
print(sklearn.metrics.confusion_matrix(target_actual, target_predicted))
print(sklearn.metrics.accuracy_score(target_actual, target_predicted))
print("="*32)
print("")
# Dummy model
print("Dummy model")
print("="*32)
print(sklearn.metrics.classification_report(target_actual, target_dummy))
print(sklearn.metrics.confusion_matrix(target_actual, target_dummy))
print(sklearn.metrics.accuracy_score(target_actual, target_dummy))
print("="*32)
print("")
# In[14]:
# Setup time series
rf_correct_case_ts = raw_data.loc[evaluation_index, :].groupby("term")["rf_correct_case"].mean()
dummy_correct_case_ts = raw_data.loc[evaluation_index, :].groupby("term")["dummy_correct_case"].mean()
# Plot all accuracies
f = plt.figure(figsize=(16, 12))
plt.plot(rf_correct_case_ts.index, rf_correct_case_ts,
marker='o', alpha=0.75)
plt.plot(dummy_correct_case_ts.index, dummy_correct_case_ts,
marker='>', alpha=0.75)
plt.legend(('Random forest', 'Dummy'))
# In[15]:
# Setup time series
rf_spread_case_ts = rf_correct_case_ts - dummy_correct_case_ts
# Plot all accuracies
f = plt.figure(figsize=(16, 12))
plt.bar(rf_spread_case_ts.index, rf_spread_case_ts,
alpha=0.75)
plt.xlabel("Term")
plt.ylabel("Spread (%)")
plt.title("Spread over dummy model for case accuracy")
# In[16]:
# Setup time series
rf_spread_case_dir_ts = pandas.expanding_sum(numpy.sign(rf_spread_case_ts))
# Plot all accuracies
f = plt.figure(figsize=(16, 12))
plt.plot(rf_spread_case_dir_ts.index, rf_spread_case_dir_ts,
alpha=0.75)
# In[24]:
# Output stats
print("t-test:")
print("Uncalibrated:")
print(scipy.stats.ttest_rel(rf_correct_case_ts.values,
dummy_correct_case_ts.values))
print("=" * 16)
print("ranksum-test:")
print("Uncalibrated:")
print(scipy.stats.ranksums(rf_correct_case_ts.values,
dummy_correct_case_ts.values))
print("=" * 16)
print("Binomial:")
case_accuracy_data = raw_data.loc[evaluation_index, ["docketId", "rf_correct_case", "dummy_correct_case"]].drop_duplicates()
print(statsmodels.stats.proportion.binom_test(case_accuracy_data["rf_correct_case"].sum(),
case_accuracy_data["rf_correct_case"].shape[0],
case_accuracy_data["dummy_correct_case"].mean(),
alternative="larger"))
# In[18]:
raw_data.loc[raw_data.loc[:, "caseName"] == "MIRANDA v. ARIZONA",
["caseName", "justiceName", "case_outcome_disposition", "justice_outcome_disposition",
"rf_predicted", "rf_predicted_score_affirm", "rf_predicted_score_reverse", "rf_correct_case", "dummy_correct_case"]].T
# In[19]:
raw_data.loc[raw_data.loc[:, "caseName"] == "OBERGEFELL v. HODGES",
["caseName", "justiceName", "case_outcome_disposition", "justice_outcome_disposition",
"rf_predicted", "rf_predicted_score_affirm", "rf_predicted_score_reverse", "rf_correct_case", "dummy_correct_case"]].T
# In[20]:
raw_data.loc[raw_data.loc[:, "caseName"] == "KING v. BURWELL",
["caseName", "justiceName", "case_outcome_disposition", "justice_outcome_disposition",
"rf_predicted", "rf_predicted_score_affirm", "rf_predicted_score_reverse", "rf_correct_case", "dummy_correct_case"]].T
# In[21]:
raw_data.loc[raw_data.loc[:, "caseName"] == 'CITIZENS UNITED v. FEDERAL ELECTION COMMISSION',
["caseName", "justiceName", "case_outcome_disposition", "justice_outcome_disposition",
"rf_predicted", "rf_predicted_score_affirm", "rf_predicted_score_reverse", "rf_correct_case", "dummy_correct_case"]].T
# In[22]:
raw_data.loc[raw_data.loc[:, "caseName"] == 'DISTRICT OF COLUMBIA v. HELLER',
["caseName", "justiceName", "case_outcome_disposition", "justice_outcome_disposition",
"rf_predicted", "rf_predicted_score_affirm", "rf_predicted_score_reverse", "rf_correct_case", "dummy_correct_case"]].T
# In[23]:
# Write output
import cPickle as pickle
import time
timestamp_suffix = time.strftime("%Y%m%d%H%M%S")
raw_data.to_csv("data/output/model_output_{0}_{1}.csv".format(trees_per_term, timestamp_suffix),
index=False)
# You probably don't want to do this, as the object can be tens of GB
#pickle.dump(m, open("scotus_scdb_model_{0}.pickle".format(timestamp_suffix), "w"))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment