Skip to content

Instantly share code, notes, and snippets.

@MehaRima
Created January 30, 2021 19:17
Show Gist options
  • Save MehaRima/99ca07735c209d32b19d2f1007e295bc to your computer and use it in GitHub Desktop.
Save MehaRima/99ca07735c209d32b19d2f1007e295bc to your computer and use it in GitHub Desktop.
Created on Skills Network Labs
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@feodorfernando
Copy link

Hello! great job!
Could you also help with the latest coursera assignment of Data Visualization?
I don't have errors, but only one thing is that dash and all the graghics are not appearing.
It says: * Running on http://localhost:8050/ (Press CTRL+C to quit)
127.0.0.1 - - [18/May/2021 23:41:42] "GET /_alive_b4bbe725-bd71-40a9-8b81-e2a889da19db HTTP/1.1" 200 -
could you help me what to do with that?

H Aska-sh, were you able to complete the latest coursera assignment on Data Visualization? Can you please share it with me

Hello!
Unfortunately, not (((
I don't know what to do. I don;t have any mistakes, but It's just not showing the dash.
And you?

if there is no error pls share that code..!

@Jus1307
Copy link

Jus1307 commented Jun 12, 2021

Hello, unfortunately I am unable to run the code. I do not understand what the issue there is.

syntax error apparently in line 82 - html.Div([ -# under create an outer division

Application layout

app.layout = html.Div(children=[

                            # REVIEW2: Dropdown creation

                            # Create an outer division 
                            html.Div([
                                # Add an division
                                html.Div([
                                    # Create an division for adding dropdown helper text for report type
                                    html.Div(
                                        [
                                        html.H2('Report Type:', style={'margin-right': '2em'}),
                                        ]
                                    ),
                                    # TASK2: Add a dropdown
                   
                                    
                                # Place them next to each other using the division style
                                ], style={'display':'flex'}),
                                
                               # Add next division 
                               html.Div([
                                   # Create an division for adding dropdown helper text for choosing year
                                    html.Div(
                                        [
                                        html.H2('Choose Year:', style={'margin-right': '2em'})
                                        ]
                                    ),
                                    dcc.Dropdown(id='input-year', 
                                                 # Update dropdown values using list comphrehension
                                                 options=[{'label': i, 'value': i} for i in year_list],
                                                 placeholder="Select a year",
                                                 style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),
                                        # Place them next to each other using the division style
                                        ], style={'display': 'flex'}),  
                                      ]),
                            #####

@feodorfernando
Copy link

try to run this...

Import required libraries

Import required libraries

import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import plotly.graph_objects as go
import plotly.express as px
from dash import no_update

Create a dash application

app = dash.Dash(name)

REVIEW1: Clear the layout and do not display exception till callback gets executed

app.config.suppress_callback_exceptions = True

Read the airline data into pandas dataframe

airline_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/airline_data.csv',
encoding = "ISO-8859-1",
dtype={'Div1Airport': str, 'Div1TailNum': str,
'Div2Airport': str, 'Div2TailNum': str})

List of years

year_list = [i for i in range(2005, 2021, 1)]

"""Compute graph data for creating yearly airline performance report

Function that takes airline data as input and create 5 dataframes based on the grouping condition to be used for plottling charts and grphs.

Argument:

df: Filtered dataframe

Returns:
Dataframes to create graph.
"""
def compute_data_choice_1(df):
# Cancellation Category Count
bar_data = df.groupby(['Month','CancellationCode'])['Flights'].sum().reset_index()
# Average flight time by reporting airline
line_data = df.groupby(['Month','Reporting_Airline'])['AirTime'].mean().reset_index()
# Diverted Airport Landings
div_data = df[df['DivAirportLandings'] != 0.0]
# Source state count
map_data = df.groupby(['OriginState'])['Flights'].sum().reset_index()
# Destination state count
tree_data = df.groupby(['DestState', 'Reporting_Airline'])['Flights'].sum().reset_index()
return bar_data, line_data, div_data, map_data, tree_data

"""Compute graph data for creating yearly airline delay report

This function takes in airline data and selected year as an input and performs computation for creating charts and plots.

Arguments:
df: Input airline data.

Returns:
Computed average dataframes for carrier delay, weather delay, NAS delay, security delay, and late aircraft delay.
"""
def compute_data_choice_2(df):
# Compute delay averages
avg_car = df.groupby(['Month','Reporting_Airline'])['CarrierDelay'].mean().reset_index()
avg_weather = df.groupby(['Month','Reporting_Airline'])['WeatherDelay'].mean().reset_index()
avg_NAS = df.groupby(['Month','Reporting_Airline'])['NASDelay'].mean().reset_index()
avg_sec = df.groupby(['Month','Reporting_Airline'])['SecurityDelay'].mean().reset_index()
avg_late = df.groupby(['Month','Reporting_Airline'])['LateAircraftDelay'].mean().reset_index()
return avg_car, avg_weather, avg_NAS, avg_sec, avg_late

Application layout

app.layout = html.Div(children=[
# TASK1: Add title to the dashboard
# Enter your code below. Make sure you have correct formatting.
html.H2('US Domestic Airline Flights Performance',style={'textAlign':'center','color':'#503d36','font-size':25}),
# REVIEW2: Dropdown creation
# Create an outer division
html.Div([
# Add an division
html.Div([
# Create an division for adding dropdown helper text for report type
html.Div(
[
html.H2('Report Type:', style={'margin-right': '2em'}),
]
),
# TASK2: Add a dropdown
# Enter your code below. Make sure you have correct formatting.
dcc.Dropdown(id='input-type',
# Update dropdown values using list comphrehension
options=[{'label': 'Yearly Airline performance', 'value':'OPT1'},{'label':'Yearly Airline Delay Report','value':'OPT2'}],
placeholder="Select a report type",
style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),
# Place them next to each other using the division style
], style={'display':'flex'}),

                               # Add next division 
                               html.Div([
                                   # Create an division for adding dropdown helper text for choosing year
                                    html.Div(
                                        [
                                        html.H2('Choose Year:', style={'margin-right': '2em'})
                                        ]
                                    ),
                                    dcc.Dropdown(id='input-year', 
                                                 # Update dropdown values using list comphrehension
                                                 options=[{'label': i, 'value': i} for i in year_list],
                                                 placeholder="Select a year",
                                                 style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),
                                        # Place them next to each other using the division style
                                        ], style={'display': 'flex'}),  
                                      ]),
                            
                            # Add Computed graphs
                            # REVIEW3: Observe how we add an empty division and providing an id that will be updated during callback
                            html.Div([ ], id='plot1'),

                            html.Div([
                                    html.Div([ ], id='plot2'),
                                    html.Div([ ], id='plot3')
                            ], style={'display': 'flex'}),
                            
                            # TASK3: Add a division with two empty divisions inside. See above disvision for example.
                            # Enter your code below. Make sure you have correct formatting.
                            html.Div([
                                    html.Div([ ], id='plot4'),
                                    html.Div([ ], id='plot5')
                            ], style={'display': 'flex'})
                           
                            ])

Callback function definition

TASK4: Add 5 ouput components

Enter your code below. Make sure you have correct formatting.

@app.callback([Output(component_id='plot1', component_property='children'),
Output(component_id='plot2', component_property='children'),
Output(component_id='plot3', component_property='children'),
Output(component_id='plot4', component_property='children'),
Output(component_id='plot5', component_property='children')],
[Input(component_id='input-type', component_property='value'),
Input(component_id='input-year', component_property='value')],
# REVIEW4: Holding output state till user enters all the form information. In this case, it will be chart type and year
[State("plot1", 'children'), State("plot2", "children"),
State("plot3", "children"), State("plot4", "children"),
State("plot5", "children")
])

Add computation to callback function and return graph

def get_graph(chart, year, children1, children2, c3, c4, c5):

    # Select data
    df =  airline_data[airline_data['Year']==int(year)]
   
    if chart == 'OPT1':
        # Compute required information for creating graph from the data
        bar_data, line_data, div_data, map_data,tree_data = compute_data_choice_1(df)
        
        # Number of flights under different cancellation categories
        bar_fig = px.bar(bar_data, x='Month', y='Flights', color='CancellationCode', title='Monthly Flight Cancellation')
        
        # TASK5: Average flight time by reporting airline
        # Enter your code below. Make sure you have correct formatting.
        line_fig = px.line(line_data, x='Month', y='AirTime', color='Reporting_Airline', title='Average monthly flight time(minutes) by airline')
        
        # Percentage of diverted airport landings per reporting airline
        pie_fig = px.pie(div_data, values='Flights', names='Reporting_Airline', title='% of flights by reporting airline')
        
        # REVIEW5: Number of flights flying from each state using choropleth
        map_fig = px.choropleth(map_data,  # Input data
                locations='OriginState', 
                color='Flights',  
                hover_data=['OriginState', 'Flights'], 
                locationmode = 'USA-states', # Set to plot as US States
                color_continuous_scale='GnBu',
                range_color=[0, map_data['Flights'].max()]) 
        map_fig.update_layout(
                title_text = 'Number of flights from origin state', 
                geo_scope='usa') # Plot only the USA instead of globe
        
        # TASK6: Number of flights flying to each state from each reporting airline
        # Enter your code below. Make sure you have correct formatting.
        tree_fig = px.treemap(tree_data,path=['DestState', 'Reporting_Airline'],values='Flights',color='Flights',color_continuous_scale='RdBu',title='Flight count by airline to destination state')
        
    
        # REVIEW6: Return dcc.Graph component to the empty division
        return [dcc.Graph(figure=tree_fig), 
                dcc.Graph(figure=pie_fig),
                dcc.Graph(figure=map_fig),
                dcc.Graph(figure=bar_fig),
                dcc.Graph(figure=line_fig)
               ]
    else:
        # REVIEW7: This covers chart type 2 and we have completed this exercise under Flight Delay Time Statistics Dashboard section
        # Compute required information for creating graph from the data
        avg_car, avg_weather, avg_NAS, avg_sec, avg_late = compute_data_choice_2(df)
        
        # Create graph
        carrier_fig = px.line(avg_car, x='Month', y='CarrierDelay', color='Reporting_Airline', title='Average carrrier delay time (minutes) by airline')
        weather_fig = px.line(avg_weather, x='Month', y='WeatherDelay', color='Reporting_Airline', title='Average weather delay time (minutes) by airline')
        nas_fig = px.line(avg_NAS, x='Month', y='NASDelay', color='Reporting_Airline', title='Average NAS delay time (minutes) by airline')
        sec_fig = px.line(avg_sec, x='Month', y='SecurityDelay', color='Reporting_Airline', title='Average security delay time (minutes) by airline')
        late_fig = px.line(avg_late, x='Month', y='LateAircraftDelay', color='Reporting_Airline', title='Average late aircraft delay time (minutes) by airline')
        
        return[dcc.Graph(figure=carrier_fig), 
               dcc.Graph(figure=weather_fig), 
               dcc.Graph(figure=nas_fig), 
               dcc.Graph(figure=sec_fig), 
               dcc.Graph(figure=late_fig)]

Run the app

if name == 'main':
app.run_server()

@uzair-ds
Copy link

try to run this...

Import required libraries

Import required libraries

import pandas as pd
import dash
import dash_html_components as html
import dash_core_components as dcc
from dash.dependencies import Input, Output, State
import plotly.graph_objects as go
import plotly.express as px
from dash import no_update

Create a dash application

app = dash.Dash(name)

REVIEW1: Clear the layout and do not display exception till callback gets executed

app.config.suppress_callback_exceptions = True

Read the airline data into pandas dataframe

airline_data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/airline_data.csv',
encoding = "ISO-8859-1",
dtype={'Div1Airport': str, 'Div1TailNum': str,
'Div2Airport': str, 'Div2TailNum': str})

List of years

year_list = [i for i in range(2005, 2021, 1)]

"""Compute graph data for creating yearly airline performance report

Function that takes airline data as input and create 5 dataframes based on the grouping condition to be used for plottling charts and grphs.

Argument:

df: Filtered dataframe

Returns:
Dataframes to create graph.
"""
def compute_data_choice_1(df):

Cancellation Category Count

bar_data = df.groupby(['Month','CancellationCode'])['Flights'].sum().reset_index()

Average flight time by reporting airline

line_data = df.groupby(['Month','Reporting_Airline'])['AirTime'].mean().reset_index()

Diverted Airport Landings

div_data = df[df['DivAirportLandings'] != 0.0]

Source state count

map_data = df.groupby(['OriginState'])['Flights'].sum().reset_index()

Destination state count

tree_data = df.groupby(['DestState', 'Reporting_Airline'])['Flights'].sum().reset_index()
return bar_data, line_data, div_data, map_data, tree_data

"""Compute graph data for creating yearly airline delay report

This function takes in airline data and selected year as an input and performs computation for creating charts and plots.

Arguments:
df: Input airline data.

Returns:
Computed average dataframes for carrier delay, weather delay, NAS delay, security delay, and late aircraft delay.
"""
def compute_data_choice_2(df):

Compute delay averages

avg_car = df.groupby(['Month','Reporting_Airline'])['CarrierDelay'].mean().reset_index()
avg_weather = df.groupby(['Month','Reporting_Airline'])['WeatherDelay'].mean().reset_index()
avg_NAS = df.groupby(['Month','Reporting_Airline'])['NASDelay'].mean().reset_index()
avg_sec = df.groupby(['Month','Reporting_Airline'])['SecurityDelay'].mean().reset_index()
avg_late = df.groupby(['Month','Reporting_Airline'])['LateAircraftDelay'].mean().reset_index()
return avg_car, avg_weather, avg_NAS, avg_sec, avg_late

Application layout

app.layout = html.Div(children=[

TASK1: Add title to the dashboard

Enter your code below. Make sure you have correct formatting.

html.H2('US Domestic Airline Flights Performance',style={'textAlign':'center','color':'#503d36','font-size':25}),

REVIEW2: Dropdown creation

Create an outer division

html.Div([

Add an division

html.Div([

Create an division for adding dropdown helper text for report type

html.Div(
[
html.H2('Report Type:', style={'margin-right': '2em'}),
]
),

TASK2: Add a dropdown

Enter your code below. Make sure you have correct formatting.

dcc.Dropdown(id='input-type',

Update dropdown values using list comphrehension

options=[{'label': 'Yearly Airline performance', 'value':'OPT1'},{'label':'Yearly Airline Delay Report','value':'OPT2'}],
placeholder="Select a report type",
style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),

Place them next to each other using the division style

], style={'display':'flex'}),

                               # Add next division 
                               html.Div([
                                   # Create an division for adding dropdown helper text for choosing year
                                    html.Div(
                                        [
                                        html.H2('Choose Year:', style={'margin-right': '2em'})
                                        ]
                                    ),
                                    dcc.Dropdown(id='input-year', 
                                                 # Update dropdown values using list comphrehension
                                                 options=[{'label': i, 'value': i} for i in year_list],
                                                 placeholder="Select a year",
                                                 style={'width':'80%', 'padding':'3px', 'font-size': '20px', 'text-align-last' : 'center'}),
                                        # Place them next to each other using the division style
                                        ], style={'display': 'flex'}),  
                                      ]),
                            
                            # Add Computed graphs
                            # REVIEW3: Observe how we add an empty division and providing an id that will be updated during callback
                            html.Div([ ], id='plot1'),

                            html.Div([
                                    html.Div([ ], id='plot2'),
                                    html.Div([ ], id='plot3')
                            ], style={'display': 'flex'}),
                            
                            # TASK3: Add a division with two empty divisions inside. See above disvision for example.
                            # Enter your code below. Make sure you have correct formatting.
                            html.Div([
                                    html.Div([ ], id='plot4'),
                                    html.Div([ ], id='plot5')
                            ], style={'display': 'flex'})
                           
                            ])

Callback function definition

TASK4: Add 5 ouput components

Enter your code below. Make sure you have correct formatting.

@app.callback([Output(component_id='plot1', component_property='children'),
Output(component_id='plot2', component_property='children'),
Output(component_id='plot3', component_property='children'),
Output(component_id='plot4', component_property='children'),
Output(component_id='plot5', component_property='children')],
[Input(component_id='input-type', component_property='value'),
Input(component_id='input-year', component_property='value')],

REVIEW4: Holding output state till user enters all the form information. In this case, it will be chart type and year

[State("plot1", 'children'), State("plot2", "children"),
State("plot3", "children"), State("plot4", "children"),
State("plot5", "children")
])

Add computation to callback function and return graph

def get_graph(chart, year, children1, children2, c3, c4, c5):

    # Select data
    df =  airline_data[airline_data['Year']==int(year)]
   
    if chart == 'OPT1':
        # Compute required information for creating graph from the data
        bar_data, line_data, div_data, map_data,tree_data = compute_data_choice_1(df)
        
        # Number of flights under different cancellation categories
        bar_fig = px.bar(bar_data, x='Month', y='Flights', color='CancellationCode', title='Monthly Flight Cancellation')
        
        # TASK5: Average flight time by reporting airline
        # Enter your code below. Make sure you have correct formatting.
        line_fig = px.line(line_data, x='Month', y='AirTime', color='Reporting_Airline', title='Average monthly flight time(minutes) by airline')
        
        # Percentage of diverted airport landings per reporting airline
        pie_fig = px.pie(div_data, values='Flights', names='Reporting_Airline', title='% of flights by reporting airline')
        
        # REVIEW5: Number of flights flying from each state using choropleth
        map_fig = px.choropleth(map_data,  # Input data
                locations='OriginState', 
                color='Flights',  
                hover_data=['OriginState', 'Flights'], 
                locationmode = 'USA-states', # Set to plot as US States
                color_continuous_scale='GnBu',
                range_color=[0, map_data['Flights'].max()]) 
        map_fig.update_layout(
                title_text = 'Number of flights from origin state', 
                geo_scope='usa') # Plot only the USA instead of globe
        
        # TASK6: Number of flights flying to each state from each reporting airline
        # Enter your code below. Make sure you have correct formatting.
        tree_fig = px.treemap(tree_data,path=['DestState', 'Reporting_Airline'],values='Flights',color='Flights',color_continuous_scale='RdBu',title='Flight count by airline to destination state')
        
    
        # REVIEW6: Return dcc.Graph component to the empty division
        return [dcc.Graph(figure=tree_fig), 
                dcc.Graph(figure=pie_fig),
                dcc.Graph(figure=map_fig),
                dcc.Graph(figure=bar_fig),
                dcc.Graph(figure=line_fig)
               ]
    else:
        # REVIEW7: This covers chart type 2 and we have completed this exercise under Flight Delay Time Statistics Dashboard section
        # Compute required information for creating graph from the data
        avg_car, avg_weather, avg_NAS, avg_sec, avg_late = compute_data_choice_2(df)
        
        # Create graph
        carrier_fig = px.line(avg_car, x='Month', y='CarrierDelay', color='Reporting_Airline', title='Average carrrier delay time (minutes) by airline')
        weather_fig = px.line(avg_weather, x='Month', y='WeatherDelay', color='Reporting_Airline', title='Average weather delay time (minutes) by airline')
        nas_fig = px.line(avg_NAS, x='Month', y='NASDelay', color='Reporting_Airline', title='Average NAS delay time (minutes) by airline')
        sec_fig = px.line(avg_sec, x='Month', y='SecurityDelay', color='Reporting_Airline', title='Average security delay time (minutes) by airline')
        late_fig = px.line(avg_late, x='Month', y='LateAircraftDelay', color='Reporting_Airline', title='Average late aircraft delay time (minutes) by airline')
        
        return[dcc.Graph(figure=carrier_fig), 
               dcc.Graph(figure=weather_fig), 
               dcc.Graph(figure=nas_fig), 
               dcc.Graph(figure=sec_fig), 
               dcc.Graph(figure=late_fig)]

Run the app

if name == 'main':
app.run_server()

really helpful..thanks

@gabbygithub
Copy link

Hello there! I've been trying to work on the same assignment. Unfortunately, it's not running either... Do you think you could help me? I would be very grateful! Thanks [:)
https://jupyterlab-0-labs-prod-jupyterlab-us-east-1.labs.cognitiveclass.ai/user/gabriellepre/doc/tree/labs/DV0101EN/5_Peer_Graded_Assignment_Questions.ipynb

@uzair-ds
Copy link

Hello there! I've been trying to work on the same assignment. Unfortunately, it's not running either... Do you think you could help me? I would be very grateful! Thanks [:)
https://jupyterlab-0-labs-prod-jupyterlab-us-east-1.labs.cognitiveclass.ai/user/gabriellepre/doc/tree/labs/DV0101EN/5_Peer_Graded_Assignment_Questions.ipynb

refer to : https://github.com/kv5uzair/DataVisualizationPython.git

@juansho01
Copy link

Hi! Could anyone found a solution? when i run the app the console shows me the next error:

dash_renderer.v2_0_0m1631739067.min.js:2 ReferenceError: A nonexistent object was used in an Input of a Dash callback. The id of this object is input-type and the property is value. The string ids in the current layout are: [...., input-year, plot1, plot2, plot3, plot4, plot5]
at Ri (dash_renderer.v2_0_0m1631739067.min.js:2)
at Ci (dash_renderer.v2_0_0m1631739067.min.js:2)
at Bi (dash_renderer.v2_0_0m1631739067.min.js:2)
at dash_renderer.v2_0_0m1631739067.min.js:2
at tt (dash_renderer.v2_0_0m1631739067.min.js:2)
at dash_renderer.v2_0_0m1631739067.min.js:2
at dash_renderer.v2_0_0m1631739067.min.js:2
at t (dash_renderer.v2_0_0m1631739067.min.js:2)
at dash_renderer.v2_0_0m1631739067.min.js:2
at tryCatch (polyfill@7.v2_0_0m1631739068.12.1.min.js:1)
zn @ dash_renderer.v2_0_0m1631739067.min.js:2
dash_renderer.v2_0_0m1631739067.min.js:2 ReferenceError: A nonexistent object was used in an Input of a Dash callback. The id of this object is input-type and the property is value. The string ids in the current layout are: [...., input-year, plot1, plot2, plot3, plot4, plot5]
at Ri (dash_renderer.v2_0_0m1631739067.min.js:2)
at Ci (dash_renderer.v2_0_0m1631739067.min.js:2)
at Bi (dash_renderer.v2_0_0m1631739067.min.js:2)
at dash_renderer.v2_0_0m1631739067.min.js:2
at tt (dash_renderer.v2_0_0m1631739067.min.js:2)
at dash_renderer.v2_0_0m1631739067.min.js:2
at dash_renderer.v2_0_0m1631739067.min.js:2
at t (dash_renderer.v2_0_0m1631739067.min.js:2)
at dash_renderer.v2_0_0m1631739067.min.js:2
at tryCatch (polyfill@7.v2_0_0m1631739068.12.1.min.js:1)

And doesn't show the graphs. Thanks

@pkmangat
Copy link

pkmangat commented Dec 3, 2021

SyntaxError: invalid syntax
theia@theiadocker-pkmangat32:/home/project$ python3 5_Peer_Graded_Assignment_Questions.py
File "5_Peer_Graded_Assignment_Questions.py", line 129
@app.callback( [....],
Getting this error.

@DidrikLindberg
Copy link

SyntaxError: invalid syntax theia@theiadocker-pkmangat32:/home/project$ python3 5_Peer_Graded_Assignment_Questions.py File "5_Peer_Graded_Assignment_Questions.py", line 129 @app.callback( [....], Getting this error.

Hi did you ever figure this one out? I am having the same problem..

@VJoshi611
Copy link

Hello! great job!
Could you also help with the latest coursera assignment of Data Visualization?
I don't have errors, but only one thing is that dash and all the graghics are not appearing.
It says: * Running on http://localhost:8050/ (Press CTRL+C to quit)
127.0.0.1 - - [18/May/2021 23:41:42] "GET /_alive_b4bbe725-bd71-40a9-8b81-e2a889da19db HTTP/1.1" 200 -
could you help me what to do with that?

H Aska-sh, were you able to complete the latest coursera assignment on Data Visualization? Can you please share it with me

You need to write the code properly and make changes if required in the given code or may be some network issue too exist. Hope your answer got solved.

@Hilslick
Copy link

Unfortunately, I am experiencing the same error code on host, can anyone help?

@tylerpan98
Copy link

I am having error of importing dash. I am wondering if somebody could help me in this.
Traceback (most recent call last):
File "dash.py", line 2, in
import dash
File "/home/project/dash.py", line 3, in
import dash_html_components as html
File "/home/theia/.local/lib/python3.6/site-packages/dash_html_components/init.py", line 1, in
from dash.html import * # noqa: F401, F403, E402
ModuleNotFoundError: No module named 'dash.html'; 'dash' is not a package

@Akshat0404
Copy link

@app.callback([Output(component_id='plot1', component_property='children'),
NameError: name 'Output' is not defined

I'm getting the above error in app.callback
please help

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment