Last active
May 11, 2022 00:02
-
-
Save MiaoDX/ecd445ad631136602739451e44250073 to your computer and use it in GitHub Desktop.
PMSNet stereo disparity 3 pixel error at test phase
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
KITTI stereo disparity 3 pixel error | |
REFERENCES: | |
* [PMSNet code](https://github.com/JiaRenChang/PSMNet/blob/b6520ff9b77168e3dfe3485f8bf6a2a798361d85/finetune.py) | |
* [type converter](https://github.com/traveller59/torchplus/blob/master/tools.py) | |
MATLAB code: | |
``` | |
% disp_error.m | |
function d_err = disp_error (D_gt,D_est,tau) | |
E = abs(D_gt-D_est); | |
n_err = length(find(D_gt>0 & E>tau(1) & E./abs(D_gt)>tau(2))); | |
n_total = length(find(D_gt>0)); | |
d_err = n_err/n_total; | |
%main.m | |
% error threshold | |
tau = [3 0.05]; | |
% stereo demo | |
disp('Load and show disparity map ... '); | |
D_est = disp_read('data/disp_est.png'); | |
D_gt = disp_read('data/disp_gt.png'); | |
d_err = disp_error(D_gt,D_est,tau); | |
``` | |
So, we should also include the `equal` of both comparison | |
FrameWork: PyTorch | |
""" | |
import torch | |
import numpy as np | |
# [type converter](https://github.com/traveller59/torchplus/blob/master/tools.py) | |
def np_dtype_to_torch(dtype): | |
type_map = { | |
np.dtype(np.float16): torch.HalfTensor, | |
np.dtype(np.float32): torch.FloatTensor, | |
np.dtype(np.float64): torch.DoubleTensor, | |
np.dtype(np.int32): torch.IntTensor, | |
np.dtype(np.int64): torch.LongTensor, | |
np.dtype(np.uint8): torch.ByteTensor, | |
} | |
return type_map[dtype] | |
def to_tensor(arg): | |
if isinstance(arg, np.ndarray): | |
return torch.from_numpy(arg).type(np_dtype_to_torch(arg.dtype)) | |
elif isinstance(arg, (list, tuple)): | |
arg = np.array(arg) | |
return torch.from_numpy(arg).type(np_dtype_to_torch(arg.dtype)) | |
else: | |
raise ValueError("unsupported arg type.") | |
def calc_3pe(disp_pred, disp_true, original=False): | |
assert disp_pred.shape == disp_true.shape | |
assert disp_pred.dim() == 3 | |
disp_pred = disp_pred.clone().type(torch.FloatTensor) | |
disp_true = disp_true.clone().type(torch.FloatTensor) | |
if original: | |
true_disp = disp_true | |
else: | |
true_disp = disp_true.clone() | |
index = np.argwhere(true_disp > 0) | |
disp_true[index[0][:], index[1][:], index[2][:]] = np.abs( | |
true_disp[index[0][:], index[1][:], index[2][:]] - | |
disp_pred[index[0][:], index[1][:], index[2][:]]) | |
correct = (disp_true[index[0][:], index[1][:], index[2][:]] <= | |
3) | (disp_true[index[0][:], index[1][:], index[2][:]] <= | |
true_disp[index[0][:], index[1][:], index[2][:]] * 0.05) | |
return 1 - (float(torch.sum(correct)) / float(len(index[0]))) | |
def calc_3pe_standalone(disp_src, disp_dst): | |
assert disp_src.shape == disp_dst.shape, "{}, {}".format( | |
disp_src.shape, disp_dst.shape) | |
assert len(disp_src.shape) == 2 # (N*M) | |
not_empty = (disp_src > 0) & (~np.isnan(disp_src)) & (disp_dst > 0) & ( | |
~np.isnan(disp_dst)) | |
disp_src_flatten = disp_src[not_empty].flatten().astype(np.float32) | |
disp_dst_flatten = disp_dst[not_empty].flatten().astype(np.float32) | |
disp_diff_l = abs(disp_src_flatten - disp_dst_flatten) | |
accept_3p = (disp_diff_l <= 3) | (disp_diff_l <= disp_dst_flatten * 0.05) | |
err_3p = 1 - np.count_nonzero(accept_3p) / len(disp_diff_l) | |
return err_3p | |
if __name__ == '__main__': | |
USE_ORIGINAL = False | |
np.random.seed(42) | |
# bz, h, w = (1, 2, 5) | |
bz, h, w = (20, 20, 50) | |
# est_disp = np.random.randint(low=10, high=200, size= (bz, h, w), dtype=np.uint8) | |
# gt_disp = np.random.randint(low=10, high=200, size= (bz, h, w), dtype=np.uint8) | |
est_disp = np.random.randint(low=100, high=2000, size=(bz, h, w)) / 10.0 | |
gt_disp = np.random.randint(low=100, high=2000, size=(bz, h, w)) / 10.0 | |
def err_two_ndarr(arr1, arr2): | |
tensor1 = to_tensor(arr1) | |
tensor2 = to_tensor(arr2) | |
# print(tensor1.shape) | |
e = calc_3pe(tensor1, tensor2, original=USE_ORIGINAL) | |
return e | |
def split_arr(arr, step): | |
l = [] | |
for i in range(0, arr.shape[0], step): | |
l.append(arr[i:i + step]) | |
return l | |
def clc_split_step(step=1): | |
est_l = split_arr(est_disp, step=step) | |
gt_l = split_arr(gt_disp, step=step) | |
err = 0 | |
for est, gt in zip(est_l, gt_l): | |
err_tmp = err_two_ndarr(est, gt) | |
# print('{:.4f}'.format(err_tmp)) | |
err += err_tmp | |
return err / len(est_l) | |
step_l = [1, 2, 3, 4, 6] | |
print("ORIGINAL:{}".format(USE_ORIGINAL)) | |
for step in step_l: | |
e = clc_split_step(step=step) | |
print("step:{}, err:{:.6f}".format(step, e)) | |
err = 0 | |
for i in range(len(est_disp)): | |
est = est_disp[i] | |
gt = gt_disp[i] | |
err_3p = calc_3pe_standalone(disp_src=est, disp_dst=gt) # gt as dst | |
# print('{:.4f}'.format(err_3p)) | |
err += err_3p | |
print("STANDALONE: {:.6f}".format(err / len(est_disp))) |
WHY?
It is somewhat strange at first glance, it should be the same, right? Let's show with one small example:
o x
x x
o o
o
means True
and x
for False
.
With batch size:
bz=3, err = 3/6 = 0.5
bz=1, err = (1/2 + 2/2 + 0/2)/3 = 0.5
bz=2, err = (3/4 + 0/2)/2 = 3/8 = 0.375
And, another one:
o x
x x
x x
With batch size:
bz=3, err = 5/6 = 0.8333
bz=1, err = (1/2 + 2/2 + 2/2)/3 = 5/6
bz=2, err = (3/4 + 2/2)/2 = 7/8 = 0.875
SO, that is it, the last batch are not treated equally with previous ones (there is only two batch for bz=3, but easily extended), it is not so proper to calculate mean of these batches.
Then the problem becomes, how can we deal with it?
- Make sure batch size is the divisor of all examples
- Yes, it can be frustrating
- Or, instead of calc mean per batch and then mean on batches, record (Correct num, ALL num) per batch and calc mean with these pairs
- Well, are there better ways?
Note, the analysis is helpful, but not that correct, please refer the correct one.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
ORIGINAL:False
step:1, err:0.942450
step:2, err:0.942450
step:3, err:0.942429
step:4, err:0.942450
step:6, err:0.942375
STANDALONE: 0.942450
ORIGINAL:True
step:1, err:0.969700
step:2, err:0.969700
step:3, err:0.969571
step:4, err:0.969700
step:6, err:0.969250
STANDALONE: 0.942450
NOTE ALSO the batch size also matters, choose one divisor of all examples is better.
And, this partially answers one issue Outlier 3-px error value in last batch of validation set #111