Skip to content

Instantly share code, notes, and snippets.

@Miking98
Created July 26, 2023 04:37
Show Gist options
  • Save Miking98/b888d57ecc8e3444e0d6c96302436a7a to your computer and use it in GitHub Desktop.
Save Miking98/b888d57ecc8e3444e0d6c96302436a7a to your computer and use it in GitHub Desktop.
"""From: https://github.com/ermongroup/ddim/blob/main/models/diffusion.py"""
import math
import torch
import torch.nn as nn
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def nonlinearity(x):
# swish
return x*torch.sigmoid(x)
def Normalize(in_channels):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(
x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
class AttnBlock(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h*w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h*w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h*w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
# b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x+h_
class Model(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
ch, out_ch, ch_mult = config.model.ch, config.model.out_ch, tuple(config.model.ch_mult)
num_res_blocks = config.model.num_res_blocks
attn_resolutions = config.model.attn_resolutions
dropout = config.model.dropout
in_channels = config.model.in_channels
resolution = config.data.image_size
resamp_with_conv = config.model.resamp_with_conv
num_timesteps = config.diffusion.num_diffusion_timesteps
if config.model.type == 'bayesian':
self.logvar = nn.Parameter(torch.zeros(num_timesteps))
self.ch = ch
self.temb_ch = self.ch*4
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# timestep embedding
self.temb = nn.Module()
self.temb.dense = nn.ModuleList([
torch.nn.Linear(self.ch,
self.temb_ch),
torch.nn.Linear(self.temb_ch,
self.temb_ch),
])
# downsampling
self.conv_in = torch.nn.Conv2d(in_channels,
self.ch,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_ch_mult = (1,)+ch_mult
self.down = nn.ModuleList()
block_in = None
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch*in_ch_mult[i_level]
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions-1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch*ch_mult[i_level]
skip_in = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks+1):
if i_block == self.num_res_blocks:
skip_in = ch*in_ch_mult[i_level]
block.append(ResnetBlock(in_channels=block_in+skip_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, t):
# Asserts that the width and height of the input image are equal to a preset resolution
assert x.shape[2] == x.shape[3] == self.resolution
# timestep embedding
temb = get_timestep_embedding(t, self.ch)
temb = self.temb.dense[0](temb)
temb = nonlinearity(temb)
temb = self.temb.dense[1](temb)
# downsampling
# The input tensor x is passed through a convolutional layer (self.conv_in), and the result is stored in hs. The model then applies a sequence of residual blocks and possibly an attention mechanism at each resolution level. The output at each stage is appended to the list hs. If it's not the final resolution level, it applies a downsampling operation.
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions-1:
hs.append(self.down[i_level].downsample(hs[-1]))
# The output of the downsampling stage (hs[-1]) goes through two blocks and an attention mechanism. The same timestep embedding temb is used as before.
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
# The model uses the outputs stored in hs and the output from the "middle" part h, applying a sequence of blocks (with potential attention) at each resolution level in reverse order. At each level, the block's output is concatenated with the corresponding tensor in hs. If it's not the lowest resolution level, it applies an upsampling operation.
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](
torch.cat([h, hs.pop()], dim=1), temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# The output tensor from the upsampling stage is normalized, passed through a nonlinearity, and a convolutional layer.d
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
@property
def device(self) -> str:
return next(self.parameters()).device
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment