model = Sequential() | |
model.add(Conv2D(32, 3, activation='relu', input_shape=(28,28, 1))) | |
model.add(Conv2D(64, 3, activation='relu')) | |
model.add(Conv2D(128, 3, activation='relu')) | |
model.add(MaxPooling2D(2, 2)) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dense(10, activation='softmax')) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment