Last active
September 19, 2024 12:43
-
-
Save NTT123/34d72e71b2e4644f78dbed12a6192b89 to your computer and use it in GitHub Desktop.
This script converts a Hugging Face LLaMA3 model checkpoint to the original LLaMA3 checkpoint format.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
This script converts a Hugging Face LLaMA3 model checkpoint to the original LLaMA3 checkpoint format. | |
Usage example: | |
python convert_hf_to_llama3.py --hf_model_path "path/to/hf/model" --output_path "path/to/output" | |
""" | |
import torch | |
from transformers import LlamaForCausalLM | |
import os | |
import json | |
import argparse | |
def write_json(data, path): | |
with open(path, "w") as f: | |
json.dump(data, f) | |
def hf_to_llama3(hf_model_path, output_path): | |
os.makedirs(output_path, exist_ok=True) | |
# Load the HF model | |
model = LlamaForCausalLM.from_pretrained(hf_model_path, torch_dtype=torch.bfloat16) | |
config = model.config | |
# Helper function to un-permute the weights | |
def unpermute(w, n_heads, dim1=config.hidden_size, dim2=config.hidden_size): | |
return w.view(n_heads, 2, dim1 // n_heads // 2, dim2).transpose(1, 2).reshape(dim1, dim2) | |
# Prepare the state dict for Llama3 format | |
llama3_state_dict = {} | |
# Convert layer weights | |
for layer_i in range(config.num_hidden_layers): | |
layer_prefix = f"model.layers.{layer_i}." | |
llama3_state_dict.update({ | |
f"layers.{layer_i}.attention.wq.weight": unpermute( | |
model.state_dict()[f"{layer_prefix}self_attn.q_proj.weight"], | |
n_heads=config.num_attention_heads | |
), | |
f"layers.{layer_i}.attention.wk.weight": unpermute( | |
model.state_dict()[f"{layer_prefix}self_attn.k_proj.weight"], | |
n_heads=config.num_key_value_heads, | |
dim1=config.hidden_size * config.num_key_value_heads // config.num_attention_heads | |
), | |
f"layers.{layer_i}.attention.wv.weight": model.state_dict()[f"{layer_prefix}self_attn.v_proj.weight"], | |
f"layers.{layer_i}.attention.wo.weight": model.state_dict()[f"{layer_prefix}self_attn.o_proj.weight"], | |
f"layers.{layer_i}.feed_forward.w1.weight": model.state_dict()[f"{layer_prefix}mlp.gate_proj.weight"], | |
f"layers.{layer_i}.feed_forward.w2.weight": model.state_dict()[f"{layer_prefix}mlp.down_proj.weight"], | |
f"layers.{layer_i}.feed_forward.w3.weight": model.state_dict()[f"{layer_prefix}mlp.up_proj.weight"], | |
f"layers.{layer_i}.attention_norm.weight": model.state_dict()[f"{layer_prefix}input_layernorm.weight"], | |
f"layers.{layer_i}.ffn_norm.weight": model.state_dict()[f"{layer_prefix}post_attention_layernorm.weight"], | |
}) | |
llama3_state_dict.update({ | |
"tok_embeddings.weight": model.state_dict()["model.embed_tokens.weight"], | |
"norm.weight": model.state_dict()["model.norm.weight"], | |
"output.weight": model.state_dict()["lm_head.weight"], | |
}) | |
# Save the weights | |
torch.save(llama3_state_dict, os.path.join(output_path, "consolidated.00.pth")) | |
# Save params.json | |
params = { | |
"dim": config.hidden_size, | |
"n_layers": config.num_hidden_layers, | |
"n_heads": config.num_attention_heads, | |
"n_kv_heads": config.num_key_value_heads, | |
"vocab_size": config.vocab_size, | |
"norm_eps": config.rms_norm_eps, | |
"max_seq_len": config.max_position_embeddings, | |
"use_scaled_rope": True, | |
"ffn_dim_multiplier": 1.3, | |
} | |
write_json(params, os.path.join(output_path, "params.json")) | |
print(f"LLaMA3 checkpoint saved to {output_path}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Convert HF LLaMA model to LLaMA3 format") | |
parser.add_argument("--hf_model_path", type=str, required=True, help="Path to the HF model") | |
parser.add_argument("--output_path", type=str, required=True, help="Path to save the converted model") | |
args = parser.parse_args() | |
hf_to_llama3(args.hf_model_path, args.output_path) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment