This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as p | |
# Data source https://www.kaggle.com/lazyjustin/pubgplayerstats/data | |
colnames = ['player_name','tracker_id','solo_KillDeathRatio','solo_WinRatio','solo_TimeSurvived','solo_RoundsPlayed','solo_Wins','solo_WinTop10Ratio','solo_Top10s','solo_Top10Ratio','solo_Losses','solo_Rating','solo_BestRating','solo_DamagePg','solo_HeadshotKillsPg','solo_HealsPg','solo_KillsPg','solo_MoveDistancePg','solo_RevivesPg','solo_RoadKillsPg','solo_TeamKillsPg','solo_TimeSurvivedPg','solo_Top10sPg','solo_Kills','solo_Assists','solo_Suicides','solo_TeamKills','solo_HeadshotKills','solo_HeadshotKillRatio','solo_VehicleDestroys','solo_RoadKills','solo_DailyKills','solo_WeeklyKills','solo_RoundMostKills','solo_MaxKillStreaks','solo_WeaponAcquired','solo_Days','solo_LongestTimeSurvived','solo_MostSurvivalTime','solo_AvgSurvivalTime','solo_WinPoints','solo_WalkDistance','solo_RideDistance','solo_MoveDistance','solo_AvgWalkDistance','solo_AvgRideDistance','solo_LongestKill','solo_Heals','solo_Revives','solo_Boosts','solo_DamageDealt','solo_DBNOs','duo_KillDeathRatio','duo_WinRatio','duo_TimeSurvived','duo_RoundsPlayed','duo_Wins','duo_WinTop10Ratio','duo_Top10s','duo_Top10Ratio','duo_Losses','duo_Rating','duo_BestRating','duo_DamagePg','duo_HeadshotKillsPg','duo_HealsPg','duo_KillsPg','duo_MoveDistancePg','duo_RevivesPg','duo_RoadKillsPg','duo_TeamKillsPg','duo_TimeSurvivedPg','duo_Top10sPg','duo_Kills','duo_Assists','duo_Suicides','duo_TeamKills','duo_HeadshotKills','duo_HeadshotKillRatio','duo_VehicleDestroys','duo_RoadKills','duo_DailyKills','duo_WeeklyKills','duo_RoundMostKills','duo_MaxKillStreaks','duo_WeaponAcquired','duo_Days','duo_LongestTimeSurvived','duo_MostSurvivalTime','duo_AvgSurvivalTime','duo_WinPoints','duo_WalkDistance','duo_RideDistance','duo_MoveDistance','duo_AvgWalkDistance','duo_AvgRideDistance','duo_LongestKill','duo_Heals','duo_Revives','duo_Boosts','duo_DamageDealt','duo_DBNOs','squad_KillDeathRatio','squad_WinRatio','squad_TimeSurvived','squad_RoundsPlayed','squad_Wins','squad_WinTop10Ratio','squad_Top10s','squad_Top10Ratio','squad_Losses','squad_Rating','squad_BestRating','squad_DamagePg','squad_HeadshotKillsPg','squad_HealsPg','squad_KillsPg','squad_MoveDistancePg','squad_RevivesPg','squad_RoadKillsPg','squad_TeamKillsPg','squad_TimeSurvivedPg','squad_Top10sPg','squad_Kills','squad_Assists','squad_Suicides','squad_TeamKills','squad_HeadshotKills','squad_HeadshotKillRatio','squad_VehicleDestroys','squad_RoadKills','squad_DailyKills','squad_WeeklyKills','squad_RoundMostKills','squad_MaxKillStreaks','squad_WeaponAcquired','squad_Days','squad_LongestTimeSurvived','squad_MostSurvivalTime','squad_AvgSurvivalTime','squad_WinPoints','squad_WalkDistance','squad_RideDistance','squad_MoveDistance','squad_AvgWalkDistance','squad_AvgRideDistance','squad_LongestKill','squad_Heals','squad_Revives','squad_Boosts','squad_DamageDealt','squad_DBNOs'] | |
data = p.read_csv('C:/workspace/MachineLearning/PUBG-Linear-Regression/data/PUBG_Player_Statistics.csv', names=colnames) | |
x_data = data.solo_HeadshotKills.tolist() | |
y_data = data.solo_Wins.tolist() | |
# Remove the column headers | |
x_data.pop(0) | |
y_data.pop(0) | |
learning_rate = 0.01 | |
training_epochs = 5 | |
display_step = 1 | |
x_train = np.asarray(x_data, dtype="f8") | |
y_train = np.asarray(y_data, dtype="f8") | |
n_samples = x_train.shape[0] | |
X = tf.placeholder(tf.float64) | |
Y = tf.placeholder(tf.float64) | |
# Set model weights | |
W = tf.Variable(np.random.randn(), name="weight", dtype=tf.float64) | |
b = tf.Variable(np.random.randn(), name="bias", dtype=tf.float64) | |
# Construct a linear model | |
pred = tf.add(tf.multiply(X, W), b) | |
# Mean squared error | |
cost = tf.reduce_sum(tf.pow(Y-pred, 2))/(2*n_samples) | |
# Gradient descent | |
# Note, minimize() knows to modify W and b because Variable objects are trainable=True by default | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
init = tf.global_variables_initializer() | |
with tf.Session() as sess: | |
sess.run(init) | |
for epoch in range(training_epochs): | |
for(x, y) in zip(x_train, y_train): | |
sess.run(optimizer, feed_dict={X: x, Y: y}) | |
# Display logs per epoch step | |
if (epoch+1) % display_step == 0: | |
c = sess.run(cost, feed_dict={X: x_train, Y:y_train}) | |
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ | |
"W=", sess.run(W), "b=", sess.run(b)) | |
print("Optimization Finished!") | |
training_cost = sess.run(cost, feed_dict={X: x_train, Y: y_train}) | |
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n') | |
# Graphic display | |
plt.plot(x_train, y_train, 'ro', label='Original data') | |
plt.plot(x_train, sess.run(W) * x_train + sess.run(b), label='Fitted line') | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment