Skip to content

Instantly share code, notes, and snippets.

@PatchworkBoy
Created July 27, 2024 13:35
Show Gist options
  • Save PatchworkBoy/3a6d3b59410e3335e5707bb9b5401a3d to your computer and use it in GitHub Desktop.
Save PatchworkBoy/3a6d3b59410e3335e5707bb9b5401a3d to your computer and use it in GitHub Desktop.
Modified version of WLED Temperature usermod, to switch D18B20 to 12bit instead of 9bit, then fully parse the LSB. Overwrite default usermod_temperature.h content with the below.
#pragma once
#include "wled.h"
#include "OneWire.h"
//Pin defaults for QuinLed Dig-Uno if not overriden
#ifndef TEMPERATURE_PIN
#ifdef ARDUINO_ARCH_ESP32
#define TEMPERATURE_PIN 18
#else //ESP8266 boards
#define TEMPERATURE_PIN 14
#endif
#endif
// the frequency to check temperature, 1 minute
#ifndef USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL
#define USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL 60000
#endif
class UsermodTemperature : public Usermod {
private:
bool initDone = false;
OneWire *oneWire;
// GPIO pin used for sensor (with a default compile-time fallback)
int8_t temperaturePin = TEMPERATURE_PIN;
// measurement unit (true==°C, false==°F)
bool degC = true;
// using parasite power on the sensor
bool parasite = false;
int8_t parasitePin = -1;
// how often do we read from sensor?
unsigned long readingInterval = USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL;
// set last reading as "40 sec before boot", so first reading is taken after 20 sec
unsigned long lastMeasurement = UINT32_MAX - USERMOD_DALLASTEMPERATURE_MEASUREMENT_INTERVAL;
// last time requestTemperatures was called
// used to determine when we can read the sensors temperature
// we have to wait at least 93.75 ms after requestTemperatures() is called
unsigned long lastTemperaturesRequest;
float temperature;
// indicates requestTemperatures has been called but the sensor measurement is not complete
bool waitingForConversion = false;
// flag set at startup if DS18B20 sensor not found, avoids trying to keep getting
// temperature if flashed to a board without a sensor attached
byte sensorFound;
bool enabled = true;
bool HApublished = false;
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
static const char _enabled[];
static const char _readInterval[];
static const char _parasite[];
static const char _parasitePin[];
//Dallas sensor quick (& dirty) reading. Credit to - Author: Peter Scargill, August 17th, 2013
float readDallas();
void requestTemperatures();
void readTemperature();
bool findSensor();
#ifndef WLED_DISABLE_MQTT
void publishHomeAssistantAutodiscovery();
#endif
public:
/*
* API calls te enable data exchange between WLED modules
*/
inline float getTemperatureC() { return temperature; }
inline float getTemperatureF() { return temperature * 1.8f + 32.0f; }
float getTemperature();
const char *getTemperatureUnit();
uint16_t getId() { return USERMOD_ID_TEMPERATURE; }
void setup();
void loop();
//void connected();
#ifndef WLED_DISABLE_MQTT
void onMqttConnect(bool sessionPresent);
#endif
//void onUpdateBegin(bool init);
//bool handleButton(uint8_t b);
//void handleOverlayDraw();
void addToJsonInfo(JsonObject& root);
//void addToJsonState(JsonObject &root);
//void readFromJsonState(JsonObject &root);
void addToConfig(JsonObject &root);
bool readFromConfig(JsonObject &root);
void appendConfigData();
};
//Dallas sensor quick (& dirty) reading. Credit to - Author: Peter Scargill, August 17th, 2013
float UsermodTemperature::readDallas() {
byte data[9];
byte dsRes[] = {0x00, 0x00, 0x7F}; // 12bit 1/3/5/7 = 9/10/11/12bit
int16_t result; // raw data from sensor
float retVal = -127.0f;
oneWire->write(0x4E); // CONFIG
oneWire->write_bytes(dsRes, 3); // SET 12BIT
if (oneWire->reset()) { // if reset() fails there are no OneWire devices
oneWire->skip(); // skip ROM
// oneWire->write(0x44);
// delay (755);
oneWire->write(0xBE); // read (temperature) from EEPROM
oneWire->read_bytes(data, 9); // first 2 bytes contain temperature
#ifdef WLED_DEBUG
if (OneWire::crc8(data,8) != data[8]) {
DEBUG_PRINTLN(F("CRC error reading temperature."));
for (byte i=0; i < 9; i++) DEBUG_PRINTF("0x%02X ", data[i]);
DEBUG_PRINT(F(" => "));
DEBUG_PRINTF("0x%02X\n", OneWire::crc8(data,8));
}
#endif
switch(sensorFound) {
case 0x10: // DS18S20 has 9-bit precision
result = (data[1] << 8) | data[0];
retVal = float(result) * 0.5f;
break;
case 0x22: // DS18B20
case 0x28: // DS1822
case 0x3B: // DS1825
case 0x42: // DS28EA00
// result = (data[1]<<4) | (data[0]>>4); // we only need whole part, we will add fraction when returning
// if (data[1] & 0x80) result |= 0xF000; // fix negative value
// retVal = float(result) + ((data[0] & 0x08) ? 0.5f : 0.0f);
// break;
unsigned int rawTemp = (int)(data[1] << 4); //upper 4-bit of integer part of temperature
byte n = data[0]; //n = lower 4-bit of integer part and 4-bit fractional part of temperature
data[0] = data[0] >> 4; //lower 4-bit integer part of temperature
rawTemp = rawTemp | (int)data[0]; //8-bit (including sign bit) integer part of temperature
retVal = (float)rawTemp + 0.5 * bitRead(n, 3) + 0.25 * bitRead(n, 2) + 0.125
* bitRead(n, 1) + 0.0625 * bitRead(n, 0); //temp in float format
break;
}
}
for (byte i=1; i<9; i++) data[0] &= data[i];
return data[0]==0xFF ? -127.0f : retVal;
}
void UsermodTemperature::requestTemperatures() {
DEBUG_PRINTLN(F("Requesting temperature."));
oneWire->reset();
oneWire->skip(); // skip ROM
oneWire->write(0x44,parasite); // request new temperature reading
if (parasite && parasitePin >=0 ) digitalWrite(parasitePin, HIGH); // has to happen within 10us (open MOSFET)
lastTemperaturesRequest = millis();
waitingForConversion = true;
}
void UsermodTemperature::readTemperature() {
if (parasite && parasitePin >=0 ) digitalWrite(parasitePin, LOW); // deactivate power (close MOSFET)
temperature = readDallas();
lastMeasurement = millis();
waitingForConversion = false;
//DEBUG_PRINTF("Read temperature %2.1f.\n", temperature); // does not work properly on 8266
DEBUG_PRINT(F("Read temperature "));
DEBUG_PRINTLN(temperature);
}
bool UsermodTemperature::findSensor() {
DEBUG_PRINTLN(F("Searching for sensor..."));
uint8_t deviceAddress[8] = {0,0,0,0,0,0,0,0};
// find out if we have DS18xxx sensor attached
oneWire->reset_search();
delay(10);
while (oneWire->search(deviceAddress)) {
DEBUG_PRINTLN(F("Found something..."));
if (oneWire->crc8(deviceAddress, 7) == deviceAddress[7]) {
switch (deviceAddress[0]) {
case 0x10: // DS18S20
case 0x22: // DS18B20
case 0x28: // DS1822
case 0x3B: // DS1825
case 0x42: // DS28EA00
DEBUG_PRINTLN(F("Sensor found."));
sensorFound = deviceAddress[0];
DEBUG_PRINTF("0x%02X\n", sensorFound);
return true;
}
}
}
DEBUG_PRINTLN(F("Sensor NOT found."));
return false;
}
#ifndef WLED_DISABLE_MQTT
void UsermodTemperature::publishHomeAssistantAutodiscovery() {
if (!WLED_MQTT_CONNECTED) return;
char json_str[1024], buf[128];
size_t payload_size;
StaticJsonDocument<1024> json;
sprintf_P(buf, PSTR("%s Temperature"), serverDescription);
json[F("name")] = buf;
strcpy(buf, mqttDeviceTopic);
strcat_P(buf, PSTR("/temperature"));
json[F("state_topic")] = buf;
json[F("device_class")] = F("temperature");
json[F("unique_id")] = escapedMac.c_str();
json[F("unit_of_measurement")] = F("°C");
payload_size = serializeJson(json, json_str);
sprintf_P(buf, PSTR("homeassistant/sensor/%s/config"), escapedMac.c_str());
mqtt->publish(buf, 0, true, json_str, payload_size);
HApublished = true;
}
#endif
void UsermodTemperature::setup() {
int retries = 10;
sensorFound = 0;
temperature = -127.0f; // default to -127, DS18B20 only goes down to -50C
if (enabled) {
// config says we are enabled
DEBUG_PRINTLN(F("Allocating temperature pin..."));
// pin retrieved from cfg.json (readFromConfig()) prior to running setup()
if (temperaturePin >= 0 && pinManager.allocatePin(temperaturePin, true, PinOwner::UM_Temperature)) {
oneWire = new OneWire(temperaturePin);
if (oneWire->reset()) {
while (!findSensor() && retries--) {
delay(25); // try to find sensor
}
}
if (parasite && pinManager.allocatePin(parasitePin, true, PinOwner::UM_Temperature)) {
pinMode(parasitePin, OUTPUT);
digitalWrite(parasitePin, LOW); // deactivate power (close MOSFET)
} else {
parasitePin = -1;
}
} else {
if (temperaturePin >= 0) {
DEBUG_PRINTLN(F("Temperature pin allocation failed."));
}
temperaturePin = -1; // allocation failed
}
}
lastMeasurement = millis() - readingInterval + 10000;
initDone = true;
}
void UsermodTemperature::loop() {
if (!enabled || !sensorFound || strip.isUpdating()) return;
static uint8_t errorCount = 0;
unsigned long now = millis();
// check to see if we are due for taking a measurement
// lastMeasurement will not be updated until the conversion
// is complete the the reading is finished
if (now - lastMeasurement < readingInterval) return;
// we are due for a measurement, if we are not already waiting
// for a conversion to complete, then make a new request for temps
if (!waitingForConversion) {
requestTemperatures();
return;
}
// we were waiting for a conversion to complete, have we waited log enough?
if (now - lastTemperaturesRequest >= 750 /* 93.75ms per the datasheet but can be up to 750ms */) {
readTemperature();
if (getTemperatureC() < -100.0f) {
if (++errorCount > 10) sensorFound = 0;
lastMeasurement = now - readingInterval + 300; // force new measurement in 300ms
return;
}
errorCount = 0;
#ifndef WLED_DISABLE_MQTT
if (WLED_MQTT_CONNECTED) {
char subuf[64];
strcpy(subuf, mqttDeviceTopic);
if (temperature > -100.0f) {
// dont publish super low temperature as the graph will get messed up
// the DallasTemperature library returns -127C or -196.6F when problem
// reading the sensor
strcat_P(subuf, PSTR("/temperature"));
mqtt->publish(subuf, 0, false, String(getTemperatureC()).c_str());
strcat_P(subuf, PSTR("_f"));
mqtt->publish(subuf, 0, false, String(getTemperatureF()).c_str());
} else {
// publish something else to indicate status?
}
}
#endif
}
}
/**
* connected() is called every time the WiFi is (re)connected
* Use it to initialize network interfaces
*/
//void UsermodTemperature::connected() {}
#ifndef WLED_DISABLE_MQTT
/**
* subscribe to MQTT topic if needed
*/
void UsermodTemperature::onMqttConnect(bool sessionPresent) {
//(re)subscribe to required topics
//char subuf[64];
if (mqttDeviceTopic[0] != 0) {
publishHomeAssistantAutodiscovery();
}
}
#endif
/*
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
* Below it is shown how this could be used for e.g. a light sensor
*/
void UsermodTemperature::addToJsonInfo(JsonObject& root) {
// dont add temperature to info if we are disabled
if (!enabled) return;
JsonObject user = root["u"];
if (user.isNull()) user = root.createNestedObject("u");
JsonArray temp = user.createNestedArray(FPSTR(_name));
if (temperature <= -100.0f) {
temp.add(0);
temp.add(F(" Sensor Error!"));
return;
}
temp.add(getTemperature());
temp.add(getTemperatureUnit());
JsonObject sensor = root[F("sensor")];
if (sensor.isNull()) sensor = root.createNestedObject(F("sensor"));
temp = sensor.createNestedArray(F("temperature"));
temp.add(getTemperature());
temp.add(getTemperatureUnit());
}
/**
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
//void UsermodTemperature::addToJsonState(JsonObject &root)
//{
//}
/**
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
* Read "<usermodname>_<usermodparam>" from json state and and change settings (i.e. GPIO pin) used.
*/
//void UsermodTemperature::readFromJsonState(JsonObject &root) {
// if (!initDone) return; // prevent crash on boot applyPreset()
//}
/**
* addToConfig() (called from set.cpp) stores persistent properties to cfg.json
*/
void UsermodTemperature::addToConfig(JsonObject &root) {
// we add JSON object: {"Temperature": {"pin": 0, "degC": true}}
JsonObject top = root.createNestedObject(FPSTR(_name)); // usermodname
top[FPSTR(_enabled)] = enabled;
top["pin"] = temperaturePin; // usermodparam
top["degC"] = degC; // usermodparam
top[FPSTR(_readInterval)] = readingInterval / 1000;
top[FPSTR(_parasite)] = parasite;
top[FPSTR(_parasitePin)] = parasitePin;
DEBUG_PRINTLN(F("Temperature config saved."));
}
/**
* readFromConfig() is called before setup() to populate properties from values stored in cfg.json
*
* The function should return true if configuration was successfully loaded or false if there was no configuration.
*/
bool UsermodTemperature::readFromConfig(JsonObject &root) {
// we look for JSON object: {"Temperature": {"pin": 0, "degC": true}}
int8_t newTemperaturePin = temperaturePin;
DEBUG_PRINT(FPSTR(_name));
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
return false;
}
enabled = top[FPSTR(_enabled)] | enabled;
newTemperaturePin = top["pin"] | newTemperaturePin;
degC = top["degC"] | degC;
readingInterval = top[FPSTR(_readInterval)] | readingInterval/1000;
readingInterval = min(120,max(10,(int)readingInterval)) * 1000; // convert to ms
parasite = top[FPSTR(_parasite)] | parasite;
parasitePin = top[FPSTR(_parasitePin)] | parasitePin;
if (!initDone) {
// first run: reading from cfg.json
temperaturePin = newTemperaturePin;
DEBUG_PRINTLN(F(" config loaded."));
} else {
DEBUG_PRINTLN(F(" config (re)loaded."));
// changing paramters from settings page
if (newTemperaturePin != temperaturePin) {
DEBUG_PRINTLN(F("Re-init temperature."));
// deallocate pin and release memory
delete oneWire;
pinManager.deallocatePin(temperaturePin, PinOwner::UM_Temperature);
temperaturePin = newTemperaturePin;
pinManager.deallocatePin(parasitePin, PinOwner::UM_Temperature);
// initialise
setup();
}
}
// use "return !top["newestParameter"].isNull();" when updating Usermod with new features
return !top[FPSTR(_parasitePin)].isNull();
}
void UsermodTemperature::appendConfigData() {
oappend(SET_F("addInfo('")); oappend(String(FPSTR(_name)).c_str()); oappend(SET_F(":")); oappend(String(FPSTR(_parasite)).c_str());
oappend(SET_F("',1,'<i>(if no Vcc connected)</i>');")); // 0 is field type, 1 is actual field
oappend(SET_F("addInfo('")); oappend(String(FPSTR(_name)).c_str()); oappend(SET_F(":")); oappend(String(FPSTR(_parasitePin)).c_str());
oappend(SET_F("',1,'<i>(for external MOSFET)</i>');")); // 0 is field type, 1 is actual field
}
float UsermodTemperature::getTemperature() {
return degC ? getTemperatureC() : getTemperatureF();
}
const char *UsermodTemperature::getTemperatureUnit() {
return degC ? "°C" : "°F";
}
// strings to reduce flash memory usage (used more than twice)
const char UsermodTemperature::_name[] PROGMEM = "Temperature";
const char UsermodTemperature::_enabled[] PROGMEM = "enabled";
const char UsermodTemperature::_readInterval[] PROGMEM = "read-interval-s";
const char UsermodTemperature::_parasite[] PROGMEM = "parasite-pwr";
const char UsermodTemperature::_parasitePin[] PROGMEM = "parasite-pwr-pin";
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment