Skip to content

Instantly share code, notes, and snippets.

@PlayingLink
Created February 20, 2024 16:28
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save PlayingLink/64ba29fc690230f42c219425da90ce99 to your computer and use it in GitHub Desktop.
Save PlayingLink/64ba29fc690230f42c219425da90ce99 to your computer and use it in GitHub Desktop.
share for PlayCanvas help
uniform sampler2D rubyTexture;
uniform vec2 rubyInputSize;
uniform vec2 rubyOutputSize;
uniform vec2 rubyTextureSize;
varying vec2 texCoord;
varying vec2 one;
varying float mod_factor;
// Enable screen curvature.
#define CURVATURE
// Controls the intensity of the barrel distortion used to emulate the
// curvature of a CRT. 0.0 is perfectly flat, 1.0 is annoyingly
// distorted, higher values are increasingly ridiculous.
#define distortion 0.08
// Simulate a CRT gamma of 2.4.
#define inputGamma 2.4
// Compensate for the standard sRGB gamma of 2.2.
#define outputGamma 2.2
// Macros.
#define TEX2D(c) pow((texture2D(rubyTexture, (c)) * gl_Color), vec4(inputGamma))
#define PI 3.141592653589
// Apply radial distortion to the given coordinate.
vec2 radialDistortion(vec2 coord)
{
coord *= rubyTextureSize / rubyInputSize;
vec2 cc = coord - 0.5;
float dist = dot(cc, cc) * distortion;
return (coord + cc * (1.0 + dist) * dist) * rubyInputSize / rubyTextureSize;
}
// Calculate the influence of a scanline on the current pixel.
//
// 'distance' is the distance in texture coordinates from the current
// pixel to the scanline in question.
// 'color' is the colour of the scanline at the horizontal location of
// the current pixel.
vec4 scanlineWeights(float distance, vec4 color)
{
// The "width" of the scanline beam is set as 2*(1 + x^4) for
// each RGB channel.
vec4 wid = 2.0 + 2.0 * pow(color, vec4(4.0));
// The "weights" lines basically specify the formula that gives
// you the profile of the beam, i.e. the intensity as
// a function of distance from the vertical center of the
// scanline. In this case, it is gaussian if width=2, and
// becomes nongaussian for larger widths. Ideally this should
// be normalized so that the integral across the beam is
// independent of its width. That is, for a narrower beam
// "weights" should have a higher peak at the center of the
// scanline than for a wider beam.
vec4 weights = vec4(distance / 0.3);
return 1.4 * exp(-pow(weights * inversesqrt(0.5 * wid), wid)) / (0.6 + 0.2 * wid);
}
void main()
{
// Here's a helpful diagram to keep in mind while trying to
// understand the code:
//
// | | | | |
// -------------------------------
// | | | | |
// | 01 | 11 | 21 | 31 | <-- current scanline
// | | @ | | |
// -------------------------------
// | | | | |
// | 02 | 12 | 22 | 32 | <-- next scanline
// | | | | |
// -------------------------------
// | | | | |
//
// Each character-cell represents a pixel on the output
// surface, "@" represents the current pixel (always somewhere
// in the bottom half of the current scan-line, or the top-half
// of the next scanline). The grid of lines represents the
// edges of the texels of the underlying texture.
// Texture coordinates of the texel containing the active pixel.
#ifdef CURVATURE
vec2 xy = radialDistortion(texCoord);
#else
vec2 xy = texCoord;
#endif
// Of all the pixels that are mapped onto the texel we are
// currently rendering, which pixel are we currently rendering?
vec2 ratio_scale = xy * rubyTextureSize - vec2(0.5);
vec2 uv_ratio = fract(ratio_scale);
// Snap to the center of the underlying texel.
xy.y = (floor(ratio_scale.y) + 0.5) / rubyTextureSize.y;
// Calculate the effective colour of the current and next
// scanlines at the horizontal location of the current pixel.
vec4 col = TEX2D(xy);
vec4 col2 = TEX2D(xy + vec2(0.0, one.y));
// Calculate the influence of the current and next scanlines on
// the current pixel.
vec4 weights = scanlineWeights(uv_ratio.y, col);
vec4 weights2 = scanlineWeights(1.0 - uv_ratio.y, col2);
vec3 mul_res = (col * weights + col2 * weights2).rgb;
// dot-mask emulation:
// Output pixels are alternately tinted green and magenta.
vec3 dotMaskWeights = mix(
vec3(1.0, 0.7, 1.0),
vec3(0.7, 1.0, 0.7),
floor(mod(mod_factor, 2.0))
);
mul_res *= dotMaskWeights;
gl_FragColor = vec4(pow(mul_res, vec3(1.0 / outputGamma)), 1.0);
}
uniform vec2 rubyInputSize;
uniform vec2 rubyOutputSize;
uniform vec2 rubyTextureSize;
// Define some calculations that will be used in fragment shader.
varying vec2 texCoord;
varying vec2 one;
varying float mod_factor;
void main()
{
// Do the standard vertex processing.
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
// transform the texture coordinates
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
// forward the vertex color
gl_FrontColor = gl_Color;
// Precalculate a bunch of useful values we'll need in the fragment
// shader.
// Texture coords.
texCoord = gl_TexCoord[0].xy;
// The size of one texel, in texture-coordinates.
one = 1.0 / rubyTextureSize;
// Resulting X pixel-coordinate of the pixel we're drawing.
mod_factor = texCoord.x * rubyTextureSize.x * rubyOutputSize.x / rubyInputSize.x;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment