Skip to content

Instantly share code, notes, and snippets.

@ProGamerGov
Created February 16, 2017 17:41
Show Gist options
  • Save ProGamerGov/73e6c242abc00777e4e8cf05cf39dc70 to your computer and use it in GitHub Desktop.
Save ProGamerGov/73e6c242abc00777e4e8cf05cf39dc70 to your computer and use it in GitHub Desktop.
This script performs the linear color transfer step that the Scale Control feature in leongatys/NeuralImageSynthesis performs.
#This script performs the linear color transfer step that
#leongatys/NeuralImageSynthesis' Scale Control code performs.
#https://github.com/leongatys/NeuralImageSynthesis/blob/master/ExampleNotebooks/ScaleControl.ipynb
import scipy
import h5py
import skimage
import os
from skimage import io,transform,img_as_float
from skimage.io import imread,imsave
from collections import OrderedDict
#from PIL import Image, ImageFilter
import numpy as np
from numpy import eye
import decimal
#import click
target_img = imread('fig4_style2.jpg').astype(float)/256
source_img = imread('fig4_content.jpg').astype(float)/256
def match_color(target_img, source_img, mode='pca', eps=1e-5):
'''
Matches the colour distribution of the target image to that of the source image
using a linear transform.
Images are expected to be of form (w,h,c) and float in [0,1].
Modes are chol, pca or sym for different choices of basis.
'''
mu_t = target_img.mean(0).mean(0)
t = target_img - mu_t
t = t.transpose(2,0,1).reshape(3,-1)
Ct = t.dot(t.T) / t.shape[1] + eps * eye(t.shape[0])
mu_s = source_img.mean(0).mean(0)
s = source_img - mu_s
s = s.transpose(2,0,1).reshape(3,-1)
Cs = s.dot(s.T) / s.shape[1] + eps * eye(s.shape[0])
if mode == 'chol':
chol_t = np.linalg.cholesky(Ct)
chol_s = np.linalg.cholesky(Cs)
ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t)
if mode == 'pca':
eva_t, eve_t = np.linalg.eigh(Ct)
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
eva_s, eve_s = np.linalg.eigh(Cs)
Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T)
ts = Qs.dot(np.linalg.inv(Qt)).dot(t)
if mode == 'sym':
eva_t, eve_t = np.linalg.eigh(Ct)
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
Qt_Cs_Qt = Qt.dot(Cs).dot(Qt)
eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt)
QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T)
ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t)
matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0)
matched_img += mu_s
matched_img[matched_img>1] = 1
matched_img[matched_img<0] = 0
return matched_img
output_img = match_color(target_img, source_img)
imsave('result_pca.png', output_img)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment