Last active
November 1, 2019 15:22
-
-
Save ProGamerGov/863a7128aaa27c2372b4e47d682870a9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import copy | |
import time | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torchvision.transforms as transforms | |
from PIL import Image | |
from CaffeLoader import loadCaffemodel, ModelParallel | |
import argparse | |
torch.cuda.synchronize() | |
start = time.time() | |
parser = argparse.ArgumentParser() | |
# Basic options | |
parser.add_argument("-style_image", help="Style target image", default='examples/inputs/seated-nude.jpg') | |
parser.add_argument("-style_blend_weights", default=None) | |
parser.add_argument("-content_image", help="Content target image", default='examples/inputs/tubingen.jpg') | |
parser.add_argument("-image_size", help="Maximum height / width of generated image", type=int, default=512) | |
parser.add_argument("-gpu", help="Zero-indexed ID of the GPU to use; for CPU mode set -gpu = c", default=0) | |
# Optimization options | |
parser.add_argument("-content_weight", type=float, default=5e0) | |
parser.add_argument("-style_weight", type=float, default=1e2) | |
parser.add_argument("-normalize_weights", action='store_true') | |
parser.add_argument("-tv_weight", type=float, default=1e-3) | |
parser.add_argument("-num_iterations", type=int, default=1000) | |
parser.add_argument("-init", choices=['random', 'image'], default='random') | |
parser.add_argument("-init_image", default=None) | |
parser.add_argument("-optimizer", choices=['lbfgs', 'adam'], default='lbfgs') | |
parser.add_argument("-learning_rate", type=float, default=1e0) | |
parser.add_argument("-lbfgs_num_correction", type=int, default=100) | |
# Output options | |
parser.add_argument("-print_iter", type=int, default=50) | |
parser.add_argument("-save_iter", type=int, default=100) | |
parser.add_argument("-output_image", default='out.png') | |
# Other options | |
parser.add_argument("-style_scale", type=float, default=1.0) | |
parser.add_argument("-original_colors", type=int, choices=[0, 1], default=0) | |
parser.add_argument("-pooling", choices=['avg', 'max'], default='max') | |
parser.add_argument("-model_file", type=str, default='models/vgg19-d01eb7cb.pth') | |
parser.add_argument("-disable_check", action='store_true') | |
parser.add_argument("-backend", choices=['nn', 'cudnn', 'mkl', 'mkldnn', 'openmp', 'mkl,cudnn', 'cudnn,mkl'], default='nn') | |
parser.add_argument("-cudnn_autotune", action='store_true') | |
parser.add_argument("-seed", type=int, default=-1) | |
parser.add_argument("-content_layers", help="layers for content", default='relu4_2') | |
parser.add_argument("-style_layers", help="layers for style", default='relu1_1,relu2_1,relu3_1,relu4_1,relu5_1') | |
parser.add_argument("-multidevice_strategy", default='4,7,29') | |
params = parser.parse_args() | |
Image.MAX_IMAGE_PIXELS = 1000000000 # Support gigapixel images | |
def main(): | |
dtype, multidevice, backward_device = setup_gpu() | |
cnn, layerList = loadCaffemodel(params.model_file, params.pooling, params.gpu, params.disable_check) | |
content_image = preprocess(params.content_image, params.image_size).type(dtype) | |
style_image_input = params.style_image.split(',') | |
style_image_list, ext = [], [".jpg", ".jpeg", ".png", ".tiff"] | |
for image in style_image_input: | |
if os.path.isdir(image): | |
images = (image + "/" + file for file in os.listdir(image) | |
if os.path.splitext(file)[1].lower() in ext) | |
style_image_list.extend(images) | |
else: | |
style_image_list.append(image) | |
style_images_caffe = [] | |
for image in style_image_list: | |
style_size = int(params.image_size * params.style_scale) | |
img_caffe = preprocess(image, style_size).type(dtype) | |
style_images_caffe.append(img_caffe) | |
if params.init_image != None: | |
image_size = (content_image.size(2), content_image.size(3)) | |
init_image = preprocess(params.init_image, image_size).type(dtype) | |
# Handle style blending weights for multiple style inputs | |
style_blend_weights = [] | |
if params.style_blend_weights == None: | |
# Style blending not specified, so use equal weighting | |
for i in style_image_list: | |
style_blend_weights.append(1.0) | |
for i, blend_weights in enumerate(style_blend_weights): | |
style_blend_weights[i] = int(style_blend_weights[i]) | |
else: | |
style_blend_weights = params.style_blend_weights.split(',') | |
assert len(style_blend_weights) == len(style_image_list), \ | |
"-style_blend_weights and -style_images must have the same number of elements!" | |
# Normalize the style blending weights so they sum to 1 | |
style_blend_sum = 0 | |
for i, blend_weights in enumerate(style_blend_weights): | |
style_blend_weights[i] = float(style_blend_weights[i]) | |
style_blend_sum = float(style_blend_sum) + style_blend_weights[i] | |
for i, blend_weights in enumerate(style_blend_weights): | |
style_blend_weights[i] = float(style_blend_weights[i]) / float(style_blend_sum) | |
content_layers = params.content_layers.split(',') | |
style_layers = params.style_layers.split(',') | |
# Set up the network, inserting style and content loss modules | |
cnn = copy.deepcopy(cnn) | |
content_losses, style_losses, tv_losses = [], [], [] | |
next_content_idx, next_style_idx = 1, 1 | |
net = nn.Sequential() | |
c, r = 0, 0 | |
if params.tv_weight > 0: | |
tv_mod = TVLoss(params.tv_weight).type(dtype) | |
net.add_module(str(len(net)), tv_mod) | |
tv_losses.append(tv_mod) | |
for i, layer in enumerate(list(cnn), 1): | |
if next_content_idx <= len(content_layers) or next_style_idx <= len(style_layers): | |
if isinstance(layer, nn.Conv2d): | |
net.add_module(str(len(net)), layer) | |
if layerList['C'][c] in content_layers: | |
print("Setting up content layer " + str(i) + ": " + str(layerList['C'][c])) | |
loss_module = ContentLoss(params.content_weight) | |
net.add_module(str(len(net)), loss_module) | |
content_losses.append(loss_module) | |
if layerList['C'][c] in style_layers: | |
print("Setting up style layer " + str(i) + ": " + str(layerList['C'][c])) | |
loss_module = StyleLoss(params.style_weight) | |
net.add_module(str(len(net)), loss_module) | |
style_losses.append(loss_module) | |
c+=1 | |
if isinstance(layer, nn.ReLU): | |
net.add_module(str(len(net)), layer) | |
if layerList['R'][r] in content_layers: | |
print("Setting up content layer " + str(i) + ": " + str(layerList['R'][r])) | |
loss_module = ContentLoss(params.content_weight) | |
net.add_module(str(len(net)), loss_module) | |
content_losses.append(loss_module) | |
next_content_idx += 1 | |
if layerList['R'][r] in style_layers: | |
print("Setting up style layer " + str(i) + ": " + str(layerList['R'][r])) | |
loss_module = StyleLoss(params.style_weight) | |
net.add_module(str(len(net)), loss_module) | |
style_losses.append(loss_module) | |
next_style_idx += 1 | |
r+=1 | |
if isinstance(layer, nn.MaxPool2d) or isinstance(layer, nn.AvgPool2d): | |
net.add_module(str(len(net)), layer) | |
if multidevice: | |
net = setup_multi_device(net) | |
# Capture content targets | |
for i in content_losses: | |
i.mode = 'capture' | |
print("Capturing content targets") | |
print_torch(net, multidevice) | |
net(content_image) | |
# Capture style targets | |
for i in content_losses: | |
i.mode = 'None' | |
for i, image in enumerate(style_images_caffe): | |
print("Capturing style target " + str(i+1)) | |
for j in style_losses: | |
j.mode = 'capture' | |
j.blend_weight = style_blend_weights[i] | |
net(style_images_caffe[i]) | |
# Set all loss modules to loss mode | |
for i in content_losses: | |
i.mode = 'loss' | |
for i in style_losses: | |
i.mode = 'loss' | |
# Maybe normalize content and style weights | |
if params.normalize_weights: | |
normalize_weights(content_losses, style_losses) | |
# Freeze the network in order to prevent | |
# unnecessary gradient calculations | |
for param in net.parameters(): | |
param.requires_grad = False | |
# Initialize the image | |
if params.seed >= 0: | |
torch.manual_seed(params.seed) | |
torch.cuda.manual_seed_all(params.seed) | |
torch.backends.cudnn.deterministic=True | |
if params.init == 'random': | |
B, C, H, W = content_image.size() | |
img = torch.randn(C, H, W).mul(0.001).unsqueeze(0).type(dtype) | |
elif params.init == 'image': | |
if params.init_image != None: | |
img = init_image.clone() | |
else: | |
img = content_image.clone() | |
img = nn.Parameter(img) | |
def maybe_print(t, loss): | |
if params.print_iter > 0 and t % params.print_iter == 0: | |
print("Iteration " + str(t) + " / "+ str(params.num_iterations)) | |
for i, loss_module in enumerate(content_losses): | |
print(" Content " + str(i+1) + " loss: " + str(loss_module.loss.item())) | |
for i, loss_module in enumerate(style_losses): | |
print(" Style " + str(i+1) + " loss: " + str(loss_module.loss.item())) | |
print(" Total loss: " + str(loss.item())) | |
torch.cuda.synchronize() | |
print("Time Elapsed: " + str(time.time() - start) + " seconds") | |
def maybe_save(t): | |
should_save = params.save_iter > 0 and t % params.save_iter == 0 | |
should_save = should_save or t == params.num_iterations | |
if should_save: | |
output_filename, file_extension = os.path.splitext(params.output_image) | |
if t == params.num_iterations: | |
filename = output_filename + str(file_extension) | |
else: | |
filename = str(output_filename) + "_" + str(t) + str(file_extension) | |
disp = deprocess(img.clone()) | |
# Maybe perform postprocessing for color-independent style transfer | |
if params.original_colors == 1: | |
disp = original_colors(deprocess(content_image.clone()), disp) | |
disp.save(str(filename)) | |
# Function to evaluate loss and gradient. We run the net forward and | |
# backward to get the gradient, and sum up losses from the loss modules. | |
# optim.lbfgs internally handles iteration and calls this function many | |
# times, so we manually count the number of iterations to handle printing | |
# and saving intermediate results. | |
num_calls = [0] | |
def feval(): | |
num_calls[0] += 1 | |
optimizer.zero_grad() | |
net(img) | |
loss = 0 | |
for mod in content_losses: | |
loss += mod.loss.to(backward_device) | |
for mod in style_losses: | |
loss += mod.loss.to(backward_device) | |
if params.tv_weight > 0: | |
for mod in tv_losses: | |
loss += mod.loss.to(backward_device) | |
loss.backward() | |
maybe_save(num_calls[0]) | |
maybe_print(num_calls[0], loss) | |
return loss | |
optimizer, loopVal = setup_optimizer(img) | |
while num_calls[0] <= loopVal: | |
optimizer.step(feval) | |
torch.cuda.synchronize() | |
print("Total Time To Run: " + str(time.time() - start) + " seconds") | |
# Configure the optimizer | |
def setup_optimizer(img): | |
if params.optimizer == 'lbfgs': | |
print("Running optimization with L-BFGS") | |
optim_state = { | |
'max_iter': params.num_iterations, | |
'tolerance_change': -1, | |
'tolerance_grad': -1, | |
} | |
if params.lbfgs_num_correction != 100: | |
optim_state['history_size'] = params.lbfgs_num_correction | |
optimizer = optim.LBFGS([img], **optim_state) | |
loopVal = 1 | |
elif params.optimizer == 'adam': | |
print("Running optimization with ADAM") | |
optimizer = optim.Adam([img], lr = params.learning_rate) | |
loopVal = params.num_iterations - 1 | |
return optimizer, loopVal | |
def setup_gpu(): | |
def setup_cuda(): | |
if 'cudnn' in params.backend: | |
torch.backends.cudnn.enabled = True | |
if params.cudnn_autotune: | |
torch.backends.cudnn.benchmark = True | |
else: | |
torch.backends.cudnn.enabled = False | |
def setup_cpu(): | |
if 'mkl' in params.backend and 'mkldnn' not in params.backend: | |
torch.backends.mkl.enabled = True | |
elif 'mkldnn' in params.backend: | |
raise ValueError("MKL-DNN is not supported yet.") | |
elif 'openmp' in params.backend: | |
torch.backends.openmp.enabled = True | |
multidevice = False | |
if "," in str(params.gpu): | |
devices = params.gpu.split(',') | |
multidevice = True | |
if 'c' in str(devices[0]).lower(): | |
backward_device = "cpu" | |
setup_cuda(), setup_cpu() | |
else: | |
backward_device = "cuda:" + devices[0] | |
setup_cuda() | |
dtype = torch.FloatTensor | |
elif "c" not in str(params.gpu).lower(): | |
setup_cuda() | |
dtype, backward_device = torch.cuda.FloatTensor, "cuda:" + str(params.gpu) | |
else: | |
setup_cpu() | |
dtype, backward_device = torch.FloatTensor, "cpu" | |
return dtype, multidevice, backward_device | |
def setup_multi_device(net): | |
assert len(params.gpu.split(',')) - 1 == len(params.multidevice_strategy.split(',')), \ | |
"The number of -multidevice_strategy layer indices minus 1, must be equal to the number of -gpu devices." | |
new_net = ModelParallel(net, params.gpu, params.multidevice_strategy) | |
return new_net | |
# Preprocess an image before passing it to a model. | |
# We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR, | |
# and subtract the mean pixel. | |
def preprocess(image_name, image_size): | |
image = Image.open(image_name).convert('RGB') | |
if type(image_size) is not tuple: | |
image_size = tuple([int((float(image_size) / max(image.size))*x) for x in (image.height, image.width)]) | |
Loader = transforms.Compose([transforms.Resize(image_size), transforms.ToTensor()]) | |
rgb2bgr = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])]) | |
Normalize = transforms.Compose([transforms.Normalize(mean=[103.939, 116.779, 123.68], std=[1,1,1])]) | |
tensor = Normalize(rgb2bgr(Loader(image) * 256)).unsqueeze(0) | |
return tensor | |
# Undo the above preprocessing. | |
def deprocess(output_tensor): | |
Normalize = transforms.Compose([transforms.Normalize(mean=[-103.939, -116.779, -123.68], std=[1,1,1])]) | |
bgr2rgb = transforms.Compose([transforms.Lambda(lambda x: x[torch.LongTensor([2,1,0])])]) | |
output_tensor = bgr2rgb(Normalize(output_tensor.squeeze(0).cpu())) / 256 | |
output_tensor.clamp_(0, 1) | |
Image2PIL = transforms.ToPILImage() | |
image = Image2PIL(output_tensor.cpu()) | |
return image | |
# Combine the Y channel of the generated image and the UV/CbCr channels of the | |
# content image to perform color-independent style transfer. | |
def original_colors(content, generated): | |
content_channels = list(content.convert('YCbCr').split()) | |
generated_channels = list(generated.convert('YCbCr').split()) | |
content_channels[0] = generated_channels[0] | |
return Image.merge('YCbCr', content_channels).convert('RGB') | |
# Print like Lua/Torch7 | |
def print_torch(net, multidevice): | |
if multidevice: | |
return | |
simplelist = "" | |
for i, layer in enumerate(net, 1): | |
simplelist = simplelist + "(" + str(i) + ") -> " | |
print("nn.Sequential ( \n [input -> " + simplelist + "output]") | |
def strip(x): | |
return str(x).replace(", ",',').replace("(",'').replace(")",'') + ", " | |
def n(): | |
return " (" + str(i) + "): " + "nn." + str(l).split("(", 1)[0] | |
for i, l in enumerate(net, 1): | |
if "2d" in str(l): | |
ks, st, pd = strip(l.kernel_size), strip(l.stride), strip(l.padding) | |
if "Conv2d" in str(l): | |
ch = str(l.in_channels) + " -> " + str(l.out_channels) | |
print(n() + "(" + ch + ", " + (ks).replace(",",'x', 1) + st + pd.replace(", ",')')) | |
elif "Pool2d" in str(l): | |
st = st.replace(" ",' ') + st.replace(", ",')') | |
print(n() + "(" + ((ks).replace(",",'x' + ks, 1) + st).replace(", ",',')) | |
else: | |
print(n()) | |
print(")") | |
# Divide weights by channel size | |
def normalize_weights(content_losses, style_losses): | |
for n, i in enumerate(content_losses): | |
i.strength = i.strength / max(i.target.size()) | |
for n, i in enumerate(style_losses): | |
i.strength = i.strength / max(i.target.size()) | |
# Define an nn Module to compute content loss | |
class ContentLoss(nn.Module): | |
def __init__(self, strength): | |
super(ContentLoss, self).__init__() | |
self.strength = strength | |
self.crit = nn.MSELoss() | |
self.mode = 'None' | |
def forward(self, input): | |
if self.mode == 'loss': | |
self.loss = self.crit(input, self.target) * self.strength | |
elif self.mode == 'capture': | |
self.target = input.detach() | |
return input | |
class GramMatrix(nn.Module): | |
def forward(self, input): | |
B, C, H, W = input.size() | |
x_flat = input.view(C, H * W) | |
return torch.mm(x_flat, x_flat.t()) | |
# Define an nn Module to compute style loss | |
class StyleLoss(nn.Module): | |
def __init__(self, strength): | |
super(StyleLoss, self).__init__() | |
self.target = torch.Tensor() | |
self.strength = strength | |
self.gram = GramMatrix() | |
self.crit = nn.MSELoss() | |
self.mode = 'None' | |
self.blend_weight = None | |
def forward(self, input): | |
self.G = self.gram(input) | |
self.G = self.G.div(input.nelement()) | |
if self.mode == 'capture': | |
if self.blend_weight == None: | |
self.target = self.G.detach() | |
elif self.target.nelement() == 0: | |
self.target = self.G.detach().mul(self.blend_weight) | |
else: | |
self.target = self.target.add(self.blend_weight, self.G.detach()) | |
elif self.mode == 'loss': | |
self.loss = self.strength * self.crit(self.G, self.target) | |
return input | |
class TVLoss(nn.Module): | |
def __init__(self, strength): | |
super(TVLoss, self).__init__() | |
self.strength = strength | |
def forward(self, input): | |
self.x_diff = input[:,:,1:,:] - input[:,:,:-1,:] | |
self.y_diff = input[:,:,:,1:] - input[:,:,:,:-1] | |
self.loss = self.strength * (torch.sum(torch.abs(self.x_diff)) + torch.sum(torch.abs(self.y_diff))) | |
return input | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment