Skip to content

Instantly share code, notes, and snippets.

@PulkitS01
Created October 15, 2019 09:28
Show Gist options
  • Save PulkitS01/4b0af5495e6d0de25de92d39c371154e to your computer and use it in GitHub Desktop.
Save PulkitS01/4b0af5495e6d0de25de92d39c371154e to your computer and use it in GitHub Desktop.
Transfer Learning using PyTorch
# Add on classifier
model.classifier[6] = Sequential(
Linear(4096, 2))
for param in model.classifier[6].parameters():
param.requires_grad = True
# defining the model
model = Net()
# defining the optimizer
optimizer = Adam(model.parameters(), lr=0.0001)
# defining the loss function
criterion = CrossEntropyLoss()
# checking if GPU is available
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
print(model)
class Net(Module):
def __init__(self):
super(Net, self).__init__()
self.cnn_layers = Sequential(
# Defining a 2D convolution layer
Conv2d(3, 4, kernel_size=3, stride=1, padding=1),
BatchNorm2d(4),
ReLU(inplace=True),
MaxPool2d(kernel_size=2, stride=2),
# Defining another 2D convolution layer
Conv2d(4, 8, kernel_size=3, stride=1, padding=1),
BatchNorm2d(8),
ReLU(inplace=True),
MaxPool2d(kernel_size=2, stride=2),
)
self.linear_layers = Sequential(
Linear(8 * 56 * 56, 2)
)
# Defining the forward pass
def forward(self, x):
x = self.cnn_layers(x)
x = x.view(x.size(0), -1)
x = self.linear_layers(x)
return x
# create validation set
train_x, val_x, train_y, val_y = train_test_split(train_x, train_y, test_size = 0.1, random_state = 13, stratify=train_y)
(train_x.shape, train_y.shape), (val_x.shape, val_y.shape)
# converting the features into torch format
x_train = torch.from_numpy(np.array(data_x))
x_train = x_train.view(x_train.size(0), -1)
y_train = torch.from_numpy(np.array(label_x))
x_val = torch.from_numpy(np.array(data_y))
x_val = x_val.view(x_val.size(0), -1)
y_val = torch.from_numpy(np.array(label_y))
# batch_size
batch_size = 128
# extracting features for train data
data_x = []
label_x = []
inputs,labels = train_x, train_y
for i in tqdm(range(int(train_x.shape[0]/batch_size)+1)):
input_data = inputs[i*batch_size:(i+1)*batch_size]
label_data = labels[i*batch_size:(i+1)*batch_size]
input_data , label_data = Variable(input_data.cuda()),Variable(label_data.cuda())
x = model.features(input_data)
data_x.extend(x.data.cpu().numpy())
label_x.extend(label_data.data.cpu().numpy())
# extracting features for validation data
data_y = []
label_y = []
inputs,labels = val_x, val_y
for i in tqdm(range(int(val_x.shape[0]/batch_size)+1)):
input_data = inputs[i*batch_size:(i+1)*batch_size]
label_data = labels[i*batch_size:(i+1)*batch_size]
input_data , label_data = Variable(input_data.cuda()),Variable(label_data.cuda())
x = model.features(input_data)
data_y.extend(x.data.cpu().numpy())
label_y.extend(label_data.data.cpu().numpy())
# Freeze model weights
for param in model.parameters():
param.requires_grad = False
# checking if GPU is available
if torch.cuda.is_available():
model = model.cuda()
# defining the target
train_y = train['emergency_or_not'].values
# importing the libraries
import pandas as pd
import numpy as np
from tqdm import tqdm
# for reading and displaying images
from skimage.io import imread
from skimage.transform import resize
import matplotlib.pyplot as plt
%matplotlib inline
# for creating validation set
from sklearn.model_selection import train_test_split
# for evaluating the model
from sklearn.metrics import accuracy_score
# PyTorch libraries and modules
import torch
from torch.autograd import Variable
from torch.nn import Linear, ReLU, CrossEntropyLoss, Sequential, Conv2d, MaxPool2d, Module, Softmax, BatchNorm2d, Dropout
from torch.optim import Adam, SGD
# torchvision for pre-trained models
from torchvision import models
# loading dataset
train = pd.read_csv('emergency_train.csv')
train.head()
# loading the pretrained model
model = models.vgg16_bn(pretrained=True)
import torch.optim as optim
# specify loss function (categorical cross-entropy)
criterion = CrossEntropyLoss()
# specify optimizer (stochastic gradient descent) and learning rate
optimizer = optim.Adam(model.classifier[6].parameters(), lr=0.0005)
# prediction for training set
prediction = []
target = []
permutation = torch.randperm(train_x.size()[0])
for i in tqdm(range(0,train_x.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = train_x[indices], train_y[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
with torch.no_grad():
output = model(batch_x.cuda())
softmax = torch.exp(output).cpu()
prob = list(softmax.numpy())
predictions = np.argmax(prob, axis=1)
prediction.append(predictions)
target.append(batch_y)
# training accuracy
accuracy = []
for i in range(len(prediction)):
accuracy.append(accuracy_score(target[i],prediction[i]))
print('training accuracy: \t', np.average(accuracy))
# prediction for validation set
prediction_val = []
target_val = []
permutation = torch.randperm(val_x.size()[0])
for i in tqdm(range(0,val_x.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = val_x[indices], val_y[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
with torch.no_grad():
output = model(batch_x.cuda())
softmax = torch.exp(output).cpu()
prob = list(softmax.numpy())
predictions = np.argmax(prob, axis=1)
prediction_val.append(predictions)
target_val.append(batch_y)
# validation accuracy
accuracy_val = []
for i in range(len(prediction_val)):
accuracy_val.append(accuracy_score(target_val[i],prediction_val[i]))
print('validation accuracy: \t', np.average(accuracy_val))
# Exploring the data
index = 10
plt.imshow(train_x[index])
if (train['emergency_or_not'][index] == 1):
print('It is an Emergency vehicle')
else:
print('It is a Non-Emergency vehicle')
# prediction for training set
prediction = []
target = []
permutation = torch.randperm(x_train.size()[0])
for i in tqdm(range(0,x_train.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = x_train[indices], y_train[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
with torch.no_grad():
output = model.classifier(batch_x.cuda())
softmax = torch.exp(output).cpu()
prob = list(softmax.numpy())
predictions = np.argmax(prob, axis=1)
prediction.append(predictions)
target.append(batch_y)
# training accuracy
accuracy = []
for i in range(len(prediction)):
accuracy.append(accuracy_score(target[i],prediction[i]))
print('training accuracy: \t', np.average(accuracy))
# loading training images
train_img = []
for img_name in tqdm(train['image_names']):
# defining the image path
image_path = 'images/' + img_name
# reading the image
img = imread(image_path)
# normalizing the pixel values
img = img/255
# resizing the image to (224,224,3)
img = resize(img, output_shape=(224,224,3), mode='constant', anti_aliasing=True)
# converting the type of pixel to float 32
img = img.astype('float32')
# appending the image into the list
train_img.append(img)
# converting the list to numpy array
train_x = np.array(train_img)
train_x.shape
# converting training images into torch format
train_x = train_x.reshape(1481, 3, 224, 224)
train_x = torch.from_numpy(train_x)
# converting the target into torch format
train_y = train_y.astype(int)
train_y = torch.from_numpy(train_y)
# shape of training data
train_x.shape, train_y.shape
# batch size
batch_size = 128
# number of epochs to train the model
n_epochs = 30
for epoch in tqdm(range(1, n_epochs+1)):
# keep track of training and validation loss
train_loss = 0.0
permutation = torch.randperm(x_train.size()[0])
training_loss = []
for i in range(0,x_train.size()[0], batch_size):
indices = permutation[i:i+batch_size]
batch_x, batch_y = x_train[indices], y_train[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
optimizer.zero_grad()
# in case you wanted a semi-full example
outputs = model.classifier(batch_x)
loss = criterion(outputs,batch_y)
training_loss.append(loss.item())
loss.backward()
optimizer.step()
training_loss = np.average(training_loss)
print('epoch: \t', epoch, '\t training loss: \t', training_loss)
# batch size of the model
batch_size = 128
# number of epochs to train the model
n_epochs = 15
for epoch in range(1, n_epochs+1):
# keep track of training and validation loss
train_loss = 0.0
permutation = torch.randperm(train_x.size()[0])
training_loss = []
for i in tqdm(range(0,train_x.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = train_x[indices], train_y[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
optimizer.zero_grad()
# in case you wanted a semi-full example
outputs = model(batch_x)
loss = criterion(outputs,batch_y)
training_loss.append(loss.item())
loss.backward()
optimizer.step()
training_loss = np.average(training_loss)
print('epoch: \t', epoch, '\t training loss: \t', training_loss)
# prediction for validation set
prediction_val = []
target_val = []
permutation = torch.randperm(x_val.size()[0])
for i in tqdm(range(0,x_val.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = x_val[indices], y_val[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
with torch.no_grad():
output = model.classifier(batch_x.cuda())
softmax = torch.exp(output).cpu()
prob = list(softmax.numpy())
predictions = np.argmax(prob, axis=1)
prediction_val.append(predictions)
target_val.append(batch_y)
# validation accuracy
accuracy_val = []
for i in range(len(prediction_val)):
accuracy_val.append(accuracy_score(target_val[i],prediction_val[i]))
print('validation accuracy: \t', np.average(accuracy_val))
# converting validation images into torch format
val_x = val_x.reshape(165, 3, 224, 224)
val_x = torch.from_numpy(val_x)
# converting the target into torch format
val_y = val_y.astype(int)
val_y = torch.from_numpy(val_y)
# shape of validation data
val_x.shape, val_y.shape
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment