Skip to content

Instantly share code, notes, and snippets.

@PulkitS01
Last active June 5, 2020 14:27
Show Gist options
  • Save PulkitS01/6e8152ee5390db4196e0872af2a42157 to your computer and use it in GitHub Desktop.
Save PulkitS01/6e8152ee5390db4196e0872af2a42157 to your computer and use it in GitHub Desktop.
Image augmentation
final_train_data = []
final_target_train = []
for i in tqdm(range(train_x.shape[0])):
final_train_data.append(train_x[i])
final_train_data.append(rotate(train_x[i], angle=45, mode = 'wrap'))
final_train_data.append(np.fliplr(train_x[i]))
final_train_data.append(np.flipud(train_x[i]))
final_train_data.append(random_noise(train_x[i],var=0.2**2))
for j in range(5):
final_target_train.append(train_y[i])
fig,ax = plt.subplots(nrows=1,ncols=5,figsize=(20,20))
for i in range(5):
ax[i].imshow(final_train[i+30])
ax[i].axis('off')
len(final_target_train), len(final_train_data)
final_train = np.array(final_train_data)
final_target_train = np.array(final_target_train)
torch.manual_seed(0)
class Net(Module):
def __init__(self):
super(Net, self).__init__()
self.cnn_layers = Sequential(
# Defining a 2D convolution layer
Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
ReLU(inplace=True),
# adding batch normalization
BatchNorm2d(32),
MaxPool2d(kernel_size=2, stride=2),
# adding dropout
Dropout(p=0.25),
# Defining another 2D convolution layer
Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
ReLU(inplace=True),
# adding batch normalization
BatchNorm2d(64),
MaxPool2d(kernel_size=2, stride=2),
# adding dropout
Dropout(p=0.25),
# Defining another 2D convolution layer
Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
ReLU(inplace=True),
# adding batch normalization
BatchNorm2d(128),
MaxPool2d(kernel_size=2, stride=2),
# adding dropout
Dropout(p=0.25),
# Defining another 2D convolution layer
Conv2d(128, 128, kernel_size=3, stride=1, padding=1),
ReLU(inplace=True),
# adding batch normalization
BatchNorm2d(128),
MaxPool2d(kernel_size=2, stride=2),
# adding dropout
Dropout(p=0.25),
)
self.linear_layers = Sequential(
Linear(128 * 14 * 14, 512),
ReLU(inplace=True),
Dropout(),
Linear(512, 256),
ReLU(inplace=True),
Dropout(),
Linear(256,10),
ReLU(inplace=True),
Dropout(),
Linear(10,2)
)
# Defining the forward pass
def forward(self, x):
x = self.cnn_layers(x)
x = x.view(x.size(0), -1)
x = self.linear_layers(x)
return x
# importing the libraries
from torchsummary import summary
import pandas as pd
import numpy as np
from skimage.io import imread, imsave
from tqdm import tqdm
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from skimage.transform import rotate
from skimage.util import random_noise
from skimage.filters import gaussian
from scipy import ndimage
# loading dataset
data = pd.read_csv('emergency_vs_non-emergency_dataset/emergency_train.csv')
data.head()
# loading images
train_img = []
for img_name in tqdm(data['image_names']):
image_path = 'emergency_vs_non-emergency_dataset/images/' + img_name
img = imread(image_path)
img = img/255
train_img.append(img)
train_x = np.array(train_img)
train_y = data['emergency_or_not'].values
train_x.shape, train_y.shape
the_model = torch.load('model.pt')
# defining the model
model = Net()
# defining the optimizer
optimizer = Adam(model.parameters(), lr=0.000075)
# defining the loss function
criterion = CrossEntropyLoss()
# checking if GPU is available
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
print(model)
# PyTorch libraries and modules
import torch
from torch.autograd import Variable
from torch.nn import Linear, ReLU, CrossEntropyLoss, Sequential, Conv2d, MaxPool2d, Module, Softmax, BatchNorm2d, Dropout
from torch.optim import Adam, SGD
torch.save(model, 'model.pt')
torch.manual_seed(0)
# batch size of the model
batch_size = 64
# number of epochs to train the model
n_epochs = 20
for epoch in range(1, n_epochs+1):
train_loss = 0.0
permutation = torch.randperm(final_train.size()[0])
training_loss = []
for i in tqdm(range(0,final_train.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = final_train[indices], final_target_train[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
optimizer.zero_grad()
outputs = model(batch_x)
loss = criterion(outputs,batch_y)
training_loss.append(loss.item())
loss.backward()
optimizer.step()
training_loss = np.average(training_loss)
print('epoch: \t', epoch, '\t training loss: \t', training_loss)
torch.manual_seed(0)
# prediction for training set
prediction = []
target = []
permutation = torch.randperm(final_train.size()[0])
for i in tqdm(range(0,final_train.size()[0], batch_size)):
indices = permutation[i:i+batch_size]
batch_x, batch_y = final_train[indices], final_target_train[indices]
if torch.cuda.is_available():
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
with torch.no_grad():
output = model(batch_x.cuda())
softmax = torch.exp(output).cpu()
prob = list(softmax.numpy())
predictions = np.argmax(prob, axis=1)
prediction.append(predictions)
target.append(batch_y)
# training accuracy
accuracy = []
for i in range(len(prediction)):
accuracy.append(accuracy_score(target[i].cpu(),prediction[i]))
print('training accuracy: \t', np.average(accuracy))
# converting training images into torch format
final_train = final_train.reshape(7405, 3, 224, 224)
final_train = torch.from_numpy(final_train)
final_train = final_train.float()
# converting the target into torch format
final_target_train = final_target_train.astype(int)
final_target_train = torch.from_numpy(final_target_train)
train_x, val_x, train_y, val_y = train_test_split(train_x, train_y, test_size = 0.1, random_state = 13, stratify=train_y)
(train_x.shape, train_y.shape), (val_x.shape, val_y.shape)
# checking the performance on validation set
torch.manual_seed(0)
output = model(val_x.cuda())
softmax = torch.exp(output).cpu()
prob = list(softmax.detach().numpy())
predictions = np.argmax(prob, axis=1)
accuracy_score(val_y, predictions)
# converting validation images into torch format
val_x = val_x.reshape(165, 3, 224, 224)
val_x = torch.from_numpy(val_x)
val_x = val_x.float()
# converting the target into torch format
val_y = val_y.astype(int)
val_y = torch.from_numpy(val_y)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment