Last active
October 24, 2019 16:44
-
-
Save RRMoelker/29923aa6bd8e0ee533f37078062c4cdf to your computer and use it in GitHub Desktop.
Image marker recognition, threshold, opening, connected components and centroid calculation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Detect markers in image and display results | |
""" | |
import time | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy import ndimage | |
from skimage import io | |
from skimage import morphology | |
def do_threshold(array, value): | |
return (array >= value) * array | |
def difference_ms(prev_t): | |
return round((time.time() - prev_t) * 1000, 1) | |
def main(path): | |
original = io.imread(path) | |
threshold = 160 | |
opening_size = 5 | |
t0 = time.time() | |
thresholded = do_threshold(original, threshold) # very slow | |
print(f'Threshold:\t{difference_ms(t0)}ms') | |
t1 = time.time() | |
structure = morphology.disk(opening_size) | |
opened = ndimage.binary_opening(thresholded, structure) # quite slow | |
structure = np.ones((3, 3), dtype=np.int) | |
print(f'Opening:\t\t{difference_ms(t1)}ms') | |
t2 = time.time() | |
labels, ncomponents = ndimage.label(opened) # fast | |
print(f'Connect:\t\t{difference_ms(t2)}ms') | |
t3 = time.time() | |
centers = ndimage.measurements.center_of_mass(opened, labels, range(1, ncomponents + 1)) # fast | |
# Note, performing moment calculation on masked image may be faster (parallelizable). | |
print(f'Center:\t\t\t{difference_ms(t3)}ms') | |
total_ms = difference_ms(t0) | |
print(f'Total:\t\t\t{total_ms}ms') | |
print(f'ncomponents: {ncomponents}') | |
print(f'centers: {centers}') | |
# | |
# Plot | |
# | |
fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True, sharey=True) | |
axis = axes[0, 0] | |
axis.imshow(original, cmap=plt.cm.gray) | |
axis.set_title('original') | |
axis.axis('off') | |
axis = axes[0, 1] | |
axis.imshow(thresholded, cmap=plt.cm.gray) | |
axis.set_title(f'threshold: {threshold}') | |
axis.axis('off') | |
axis = axes[1, 0] | |
axis.imshow(opened, cmap=plt.cm.gray) | |
axis.set_title(f'opening; disk r={opening_size}') | |
axis.axis('off') | |
axis = axes[1, 1] | |
axis.imshow(original, cmap=plt.cm.gray) | |
axis.set_title(f'{ncomponents} center(s)') | |
axis.scatter(np.array(centers)[:, 1], np.array(centers)[:, 0], s=50, c='red', marker='+') | |
axis.axis('off') | |
# fig.suptitle(f'Total {total_ms}ms', fontsize=12) | |
# fig.tight_layout(rect=[0, 0.03, 1, 0.95]) | |
plt.savefig('plot.png', bbox_inches='tight') | |
plt.show() | |
fig, axis = plt.subplots(1, 1, figsize=(8, 8), sharex=True, sharey=True) | |
axis.imshow(original, cmap=plt.cm.gray) | |
axis.scatter(np.array(centers)[:, 1], np.array(centers)[:, 0], s=50, c='red', marker='+') | |
axis.axis('off') | |
plt.savefig('result.png', bbox_inches='tight') | |
if __name__ == "__main__": | |
path = 'luminance_raw_with_IR_light.jpg' | |
path = 'more-marker-raw_IR_light.jpg' | |
main(path) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment