Skip to content

Instantly share code, notes, and snippets.

@RRMoelker
Last active October 24, 2019 16:44
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
Star You must be signed in to star a gist
Embed
What would you like to do?
Image marker recognition, threshold, opening, connected components and centroid calculation
"""
Detect markers in image and display results
"""
import time
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
from skimage import io
from skimage import morphology
def do_threshold(array, value):
return (array >= value) * array
def difference_ms(prev_t):
return round((time.time() - prev_t) * 1000, 1)
def main(path):
original = io.imread(path)
threshold = 160
opening_size = 5
t0 = time.time()
thresholded = do_threshold(original, threshold) # very slow
print(f'Threshold:\t{difference_ms(t0)}ms')
t1 = time.time()
structure = morphology.disk(opening_size)
opened = ndimage.binary_opening(thresholded, structure) # quite slow
structure = np.ones((3, 3), dtype=np.int)
print(f'Opening:\t\t{difference_ms(t1)}ms')
t2 = time.time()
labels, ncomponents = ndimage.label(opened) # fast
print(f'Connect:\t\t{difference_ms(t2)}ms')
t3 = time.time()
centers = ndimage.measurements.center_of_mass(opened, labels, range(1, ncomponents + 1)) # fast
# Note, performing moment calculation on masked image may be faster (parallelizable).
print(f'Center:\t\t\t{difference_ms(t3)}ms')
total_ms = difference_ms(t0)
print(f'Total:\t\t\t{total_ms}ms')
print(f'ncomponents: {ncomponents}')
print(f'centers: {centers}')
#
# Plot
#
fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True, sharey=True)
axis = axes[0, 0]
axis.imshow(original, cmap=plt.cm.gray)
axis.set_title('original')
axis.axis('off')
axis = axes[0, 1]
axis.imshow(thresholded, cmap=plt.cm.gray)
axis.set_title(f'threshold: {threshold}')
axis.axis('off')
axis = axes[1, 0]
axis.imshow(opened, cmap=plt.cm.gray)
axis.set_title(f'opening; disk r={opening_size}')
axis.axis('off')
axis = axes[1, 1]
axis.imshow(original, cmap=plt.cm.gray)
axis.set_title(f'{ncomponents} center(s)')
axis.scatter(np.array(centers)[:, 1], np.array(centers)[:, 0], s=50, c='red', marker='+')
axis.axis('off')
# fig.suptitle(f'Total {total_ms}ms', fontsize=12)
# fig.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig('plot.png', bbox_inches='tight')
plt.show()
fig, axis = plt.subplots(1, 1, figsize=(8, 8), sharex=True, sharey=True)
axis.imshow(original, cmap=plt.cm.gray)
axis.scatter(np.array(centers)[:, 1], np.array(centers)[:, 0], s=50, c='red', marker='+')
axis.axis('off')
plt.savefig('result.png', bbox_inches='tight')
if __name__ == "__main__":
path = 'luminance_raw_with_IR_light.jpg'
path = 'more-marker-raw_IR_light.jpg'
main(path)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment