Skip to content

Instantly share code, notes, and snippets.

packer {
required_plugins {
amazon = {
version = ">= 1.1.3"
source = "github.com/hashicorp/amazon"
}
}
}
@RevoStaffone
RevoStaffone / db-sport
Created October 21, 2025 12:40
database
SET FOREIGN_KEY_CHECKS=0;
SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
START TRANSACTION;
SET time_zone = "+00:00";
DROP TABLE IF EXISTS `invitation`;
CREATE TABLE `invitation` (
`id_invitation` int(11) NOT NULL,
`type` enum('team','tournoi') NOT NULL,
`id_team` int(11) DEFAULT NULL,
// ==UserScript==
// @name Mafia 13N
// @version 2024.11.17
// @match https://www.blsspainmorocco.net/*
// @match https://mail.google.com/*
// @run-at document-end
// @inject-into page
// @noframes
// @grant unsafeWindow
// @grant GM.setValue
import React, { useState, useEffect, useRef } from 'react';
import {
View,
TextInput,
StyleSheet,
Text,
ActivityIndicator,
Animated,
Easing,
Platform,
@RevoStaffone
RevoStaffone / api_signup.php
Created September 21, 2023 13:04
api de signup de l'application propertips
<?php
header("Content-Type: application/json; charset=UTF-8");
header("Access-Control-Allow-Origin: *");
header("Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept");
error_reporting(0);
require('../functions.php'); // ON DÉFINI LES FUNCTIONS
include('../config.php'); // ON SE CONNECTE A LA BASE DE DONNÉES
include('../config_PDO.php');
require('../theCallR_2/envoi_sms_2.php');
include('../002_packages/jwt/JWT.php');
import pandas as pd
from keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
symbol = 'CFX'
# Step 1: Load historical price data and extracted features
historical_data = pd.read_csv(symbol+'/data_'+symbol+'.csv')
features_data = pd.read_csv(symbol+'/'+symbol+'_features.csv')
import pandas as pd
import numpy as np
def add_technical_indicators(df):
# Calculate 7-day and 30-day Moving Averages
df['MA_7'] = df['close'].rolling(window=7).mean()
df['MA_30'] = df['close'].rolling(window=30).mean()
# Calculate Relative Strength Index (RSI)
delta = df['close'].diff()
import requests
import pandas as pd
def get_historical_data(symbol, currency, limit, toTs=None):
base_url = 'https://min-api.cryptocompare.com/data/v2/histominute'
params = {
'fsym': symbol,
'tsym': currency,
'limit': limit,
}
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense
symbol = 'cfx'
# Load the data from the CSV file into a DataFrame
<?php ///////////////////////////////////////////////////////////////////////////////////////////////////////////
include("scripts/bandeau_style.php");
////////////////////////////////////////////////////////////////////////////////////////////////////////////
?>
</head>
<!-- END HEAD -->
<!-- BEGIN BODY -->
<body class="page-header-fixed"> <!-- Sidebar Closed Page-->
<!-- BEGIN HEADER -->
<?php ///////////////////////////////////////////////////////////////////////////////////////////////////////////