Skip to content

Instantly share code, notes, and snippets.

@RigoLigoRLC
Created January 12, 2024 16:30
Show Gist options
  • Save RigoLigoRLC/e7d0deb66cbbf59d733286f7dff99203 to your computer and use it in GitHub Desktop.
Save RigoLigoRLC/e7d0deb66cbbf59d733286f7dff99203 to your computer and use it in GitHub Desktop.
CAN_H Decode for libsigrokdecode for DSView(v1.3.1) for DSLogic
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2019 Stephan Thiele <stephan.thiele@mailbox.org>
## Copyright (C) 2023 DreamSourceLab <support@dreamsourcelab.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
from common.srdhelper import bitpack_msb
import sigrokdecode as srd
class SamplerateError(Exception):
pass
def dlc2len(dlc):
return [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64][dlc]
class Decoder(srd.Decoder):
api_version = 3
id = 'can_h'
name = 'CAN_H'
longname = 'Controller Area Network (CAN_H line version)'
desc = 'Field bus protocol for distributed realtime control.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['can']
tags = ['Automotive']
channels = (
{'id': 'can_rx', 'name': 'CAN', 'desc': 'CAN bus line', 'idn':'dec_can_chan_can_rx'},
)
options = (
{'id': 'bitrate', 'desc': 'bitrate (bits/s)', 'default': 1000000, 'idn':'dec_can_opt_bitrate'},
{'id': 'sample_point', 'desc': 'Sample point (%)', 'default': 70.0, 'idn':'dec_can_opt_sample_point'},
)
annotations = (
('data', 'CAN payload data'),
('sof', 'Start of frame'),
('eof', 'End of frame'),
('id', 'Identifier'),
('ext-id', 'Extended identifier'),
('full-id', 'Full identifier'),
('ide', 'Identifier extension bit'),
('reserved-bit', 'Reserved bit 0 and 1'),
('rtr', 'Remote transmission request'),
('srr', 'Substitute remote request'),
('dlc', 'Data length count'),
('crc-sequence', 'CRC sequence'),
('crc-delimiter', 'CRC delimiter'),
('ack-slot', 'ACK slot'),
('ack-delimiter', 'ACK delimiter'),
('stuff-bit', 'Stuff bit'),
('warnings', 'Human-readable warnings'),
('bit', 'Bit'),
)
annotation_rows = (
('bits', 'Bits', (15, 17)),
('fields', 'Fields', tuple(range(15))),
('warnings', 'Warnings', (16,)),
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.reset_variables()
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_python = self.register(srd.OUTPUT_PYTHON)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
self.bit_width = float(self.samplerate) / float(self.options['bitrate'])
self.sample_point = (self.bit_width / 100.0) * self.options['sample_point']
# Generic helper for CAN bit annotations.
def putg(self, ss, es, data):
left, right = int(self.sample_point), int(self.bit_width - self.sample_point)
self.put(ss - left, es + right, self.out_ann, data)
# Single-CAN-bit annotation using the current samplenum.
def putx(self, data):
self.putg(self.samplenum, self.samplenum, data)
# Single-CAN-bit annotation using the samplenum of CAN bit 12.
def put12(self, data):
self.putg(self.ss_bit12, self.ss_bit12, data)
# Single-CAN-bit annotation using the samplenum of CAN bit 32.
def put32(self, data):
self.putg(self.ss_bit32, self.ss_bit32, data)
# Multi-CAN-bit annotation from self.ss_block to current samplenum.
def putb(self, data):
self.putg(self.ss_block, self.samplenum, data)
def putpy(self, data):
self.put(self.ss_packet, self.es_packet, self.out_python, data)
def reset_variables(self):
self.state = 'IDLE'
self.sof = self.frame_type = self.dlc = None
self.rawbits = [] # All bits, including stuff bits
self.bits = [] # Only actual CAN frame bits (no stuff bits)
self.curbit = 0 # Current bit of CAN frame (bit 0 == SOF)
self.last_databit = 999 # Positive value that bitnum+x will never match
self.ss_block = None
self.ss_bit12 = None
self.ss_bit32 = None
self.ss_databytebits = []
self.frame_bytes = []
self.rtr_type = None
self.rtr = None
# Poor man's clock synchronization. Use signal edges which change to
# dominant state in rather simple ways. This naive approach is neither
# aware of the SYNC phase's width nor the specific location of the edge,
# but improves the decoder's reliability when the input signal's bitrate
# does not exactly match the nominal rate.
def dom_edge_seen(self, force = False):
self.dom_edge_snum = self.samplenum
self.dom_edge_bcount = self.curbit
# Determine the position of the next desired bit's sample point.
def get_sample_point(self, bitnum):
samplenum = self.dom_edge_snum
samplenum += self.bit_width * (bitnum - self.dom_edge_bcount)
samplenum += self.sample_point
return int(samplenum)
def is_stuff_bit(self):
# CAN uses NRZ encoding and bit stuffing.
# After 5 identical bits, a stuff bit of opposite value is added.
# But not in the CRC delimiter, ACK, and end of frame fields.
if len(self.bits) > self.last_databit + 17:
return False
last_6_bits = self.rawbits[-6:]
if last_6_bits not in ([0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0]):
return False
# Stuff bit. Keep it in self.rawbits, but drop it from self.bits.
self.bits.pop() # Drop last bit.
return True
def is_valid_crc(self, crc_bits):
return True # TODO
def decode_error_frame(self, bits):
pass # TODO
def decode_overload_frame(self, bits):
pass # TODO
# Both standard and extended frames end with CRC, CRC delimiter, ACK,
# ACK delimiter, and EOF fields. Handle them in a common function.
# Returns True if the frame ended (EOF), False otherwise.
def decode_frame_end(self, can_rx, bitnum):
# Remember start of CRC sequence (see below).
if bitnum == (self.last_databit + 1):
self.ss_block = self.samplenum
self.crc_len = 15
# CRC sequence (15 bits, 17 bits or 21 bits)
elif bitnum == (self.last_databit + self.crc_len):
crc_type = "CRC-15"
x = self.last_databit + 1
crc_bits = self.bits[x:x + self.crc_len + 1]
self.crc = bitpack_msb(crc_bits)
self.putb([11, ['%s sequence: 0x%04x' % (crc_type, self.crc),
'%s: 0x%04x' % (crc_type, self.crc), '%s' % crc_type]])
if not self.is_valid_crc(crc_bits):
self.putb([16, ['CRC is invalid']])
# CRC delimiter bit (recessive)
elif bitnum == (self.last_databit + self.crc_len + 1):
self.putx([12, ['CRC delimiter: %d' % can_rx,
'CRC d: %d' % can_rx, 'CRC d']])
if can_rx != 1:
self.putx([16, ['CRC delimiter must be a recessive bit']])
# ACK slot bit (dominant: ACK, recessive: NACK)
elif bitnum == (self.last_databit + self.crc_len + 2):
ack = 'ACK' if can_rx == 0 else 'NACK'
self.putx([13, ['ACK slot: %s' % ack, 'ACK s: %s' % ack, 'ACK s']])
# ACK delimiter bit (recessive)
elif bitnum == (self.last_databit + self.crc_len + 3):
self.putx([14, ['ACK delimiter: %d' % can_rx,
'ACK d: %d' % can_rx, 'ACK d']])
if can_rx != 1:
self.putx([16, ['ACK delimiter must be a recessive bit']])
# Remember start of EOF (see below).
elif bitnum == (self.last_databit + self.crc_len + 4):
self.ss_block = self.samplenum
# End of frame (EOF), 7 recessive bits
elif bitnum == (self.last_databit + self.crc_len + 10):
self.putb([2, ['End of frame', 'EOF', 'E']])
if self.rawbits[-7:] != [1, 1, 1, 1, 1, 1, 1]:
self.putb([16, ['End of frame (EOF) must be 7 recessive bits']])
self.es_packet = self.samplenum
py_data = tuple([self.frame_type, self.fullid, self.rtr_type,
self.dlc, self.frame_bytes])
self.putpy(py_data)
self.reset_variables()
return True
return False
# Returns True if the frame ended (EOF), False otherwise.
def decode_standard_frame(self, can_rx, bitnum):
# Bit 14: RB0 (Reserved bit 0)
if bitnum == 14:
self.putx([7, ['Reserved bit 0: %d' % can_rx,
'RB0: %d' % can_rx, 'RB0']])
rtr = 'remote' if self.bits[12] == 1 else 'data'
self.put12([8, ['Remote transmission request: %s frame' % rtr,
'RTR: %s frame' % rtr, 'RTR']])
self.rtr_type = rtr
self.dlc_start = 15
# Remember start of DLC (see below).
elif bitnum == self.dlc_start:
self.ss_block = self.samplenum
# Bits 15-18: Data length code (DLC), in number of bytes (0-8).
elif bitnum == self.dlc_start + 3:
self.dlc = bitpack_msb(self.bits[self.dlc_start:self.dlc_start + 4])
self.putb([10, ['Data length code: %d' % self.dlc,
'DLC: %d' % self.dlc, 'DLC']])
self.last_databit = self.dlc_start + 3 + (dlc2len(self.dlc) * 8)
#if rtr == remote then dlc = 0
if self.dlc != 0 and self.rtr_type == 'remote':
self.putb([16, ['Data length code (DLC) != 0 is not allowed']])
self.dlc = 0
self.last_databit = self.dlc_start + 3 + (dlc2len(self.dlc) * 8)
#if dlc > 8 then dlc = 8
elif self.dlc > 8:
self.putb([16, ['Data length code (DLC) > 8 is not allowed']])
self.dlc = 8
self.last_databit = self.dlc_start + 3 + (dlc2len(self.dlc) * 8)
# Remember all databyte bits, except the very last one.
elif bitnum in range(self.dlc_start + 4, self.last_databit):
self.ss_databytebits.append(self.samplenum)
# Bits 19-X: Data field (0-8 bytes, depending on DLC)
# The bits within a data byte are transferred MSB-first.
elif bitnum == self.last_databit:
self.ss_databytebits.append(self.samplenum) # Last databyte bit.
for i in range(dlc2len(self.dlc)):
x = self.dlc_start + 4 + (8 * i)
b = bitpack_msb(self.bits[x:x + 8])
self.frame_bytes.append(b)
ss = self.ss_databytebits[i * 8]
es = self.ss_databytebits[((i + 1) * 8) - 1]
self.putg(ss, es, [0, ['Data byte %d: 0x%02x' % (i, b),
'DB %d: 0x%02x' % (i, b), 'DB']])
self.ss_databytebits = []
elif bitnum > self.last_databit:
return self.decode_frame_end(can_rx, bitnum)
return False
# Returns True if the frame ended (EOF), False otherwise.
def decode_extended_frame(self, can_rx, bitnum):
# Remember start of EID (see below).
if bitnum == 14:
self.ss_block = self.samplenum
self.dlc_start = 35
# Bits 14-31: Extended identifier (EID[17..0])
elif bitnum == 31:
self.eid = bitpack_msb(self.bits[14:])
s = '%d (0x%x)' % (self.eid, self.eid)
self.putb([4, ['Extended Identifier: %s' % s,
'Extended ID: %s' % s, 'Extended ID', 'EID']])
self.fullid = self.ident << 18 | self.eid
s = '%d (0x%x)' % (self.fullid, self.fullid)
self.putb([5, ['Full Identifier: %s' % s, 'Full ID: %s' % s,
'Full ID', 'FID']])
# Bit 12: Substitute remote request (SRR) bit
self.put12([9, ['Substitute remote request: %d' % self.bits[12],
'SRR: %d' % self.bits[12], 'SRR']])
# Bit 32: Remote transmission request (RTR) bit
# Data frame: dominant, remote frame: recessive
# Remote frames do not contain a data field.
# Remember start of RTR (see below).
if bitnum == 32:
self.ss_bit32 = self.samplenum
self.rtr = can_rx
rtr = 'remote' if can_rx == 1 else 'data'
self.putx([8, ['Remote transmission request: %s frame' % rtr,
'RTR: %s frame' % rtr, 'RTR']])
self.rtr_type = rtr
# Bit 33: RB1 (reserved bit)
elif bitnum == 33:
self.putx([7, ['Reserved bit 1: %d' % can_rx,
'RB1: %d' % can_rx, 'RB1']])
# Bit 34: RB0 (reserved bit)
elif bitnum == 34:
self.putx([7, ['Reserved bit 0: %d' % can_rx,
'RB0: %d' % can_rx, 'RB0']])
# Remember start of DLC (see below).
elif bitnum == self.dlc_start:
self.ss_block = self.samplenum
# Bits 35-38: Data length code (DLC), in number of bytes (0-8).
elif bitnum == self.dlc_start + 3:
self.dlc = bitpack_msb(self.bits[self.dlc_start:self.dlc_start + 4])
self.putb([10, ['Data length code: %d' % self.dlc,
'DLC: %d' % self.dlc, 'DLC']])
self.last_databit = self.dlc_start + 3 + (dlc2len(self.dlc) * 8)
#if rtr == remote then dlc = 0
if self.dlc != 0 and self.rtr_type == 'remote':
self.dlc = 0
self.last_databit = self.dlc_start + 3 + (dlc2len(self.dlc) * 8)
#if dlc > 8 then dlc = 8
elif self.dlc > 8:
self.dlc = 8
self.last_databit = self.dlc_start + 3 + (dlc2len(self.dlc) * 8)
# Remember all databyte bits, except the very last one.
elif bitnum in range(self.dlc_start + 4, self.last_databit):
self.ss_databytebits.append(self.samplenum)
# Bits 39-X: Data field (0-8 bytes, depending on DLC)
# The bits within a data byte are transferred MSB-first.
elif bitnum == self.last_databit:
self.ss_databytebits.append(self.samplenum) # Last databyte bit.
for i in range(dlc2len(self.dlc)):
x = self.dlc_start + 4 + (8 * i)
b = bitpack_msb(self.bits[x:x + 8])
self.frame_bytes.append(b)
ss = self.ss_databytebits[i * 8]
es = self.ss_databytebits[((i + 1) * 8) - 1]
self.putg(ss, es, [0, ['Data byte %d: 0x%02x' % (i, b),
'DB %d: 0x%02x' % (i, b), 'DB']])
self.ss_databytebits = []
elif bitnum > self.last_databit:
return self.decode_frame_end(can_rx, bitnum)
return False
def handle_bit(self, can_rx):
self.rawbits.append(can_rx)
self.bits.append(can_rx)
# Get the index of the current CAN frame bit (without stuff bits).
bitnum = len(self.bits) - 1
# If this is a stuff bit, remove it from self.bits and ignore it.
if self.is_stuff_bit():
self.putx([15, [str(can_rx)]])
self.curbit += 1 # Increase self.curbit (bitnum is not affected).
return
else:
self.putx([17, [str(can_rx)]])
# Bit 0: Start of frame (SOF) bit
if bitnum == 0:
self.ss_packet = self.samplenum
self.putx([1, ['Start of frame', 'SOF', 'S']])
if can_rx != 0:
self.putx([16, ['Start of frame (SOF) must be a dominant bit']])
# Remember start of ID (see below).
elif bitnum == 1:
self.ss_block = self.samplenum
# Bits 1-11: Identifier (ID[10..0])
# The bits ID[10..4] must NOT be all recessive.
elif bitnum == 11:
# BEWARE! Don't clobber the decoder's .id field which is
# part of its boiler plate!
self.ident = bitpack_msb(self.bits[1:])
self.fullid = self.ident
s = '%d (0x%x)' % (self.ident, self.ident),
self.putb([3, ['Identifier: %s' % s, 'ID: %s' % s, 'ID']])
if (self.ident & 0x7f0) == 0x7f0:
self.putb([16, ['Identifier bits 10..4 must not be all recessive']])
# RTR or SRR bit, depending on frame type (gets handled later).
elif bitnum == 12:
# self.putx([0, ['RTR/SRR: %d' % can_rx]]) # Debug only.
self.ss_bit12 = self.samplenum
# Bit 13: Identifier extension (IDE) bit
# Standard frame: dominant, extended frame: recessive
elif bitnum == 13:
ide = self.frame_type = 'standard' if can_rx == 0 else 'extended'
self.putx([6, ['Identifier extension bit: %s frame' % ide,
'IDE: %s frame' % ide, 'IDE']])
# Bits 14-X: Frame-type dependent, passed to the resp. handlers.
elif bitnum >= 14:
if self.frame_type == 'standard':
done = self.decode_standard_frame(can_rx, bitnum)
else:
done = self.decode_extended_frame(can_rx, bitnum)
# The handlers return True if a frame ended (EOF).
if done:
return
# After a frame there are 3 intermission bits (recessive).
# After these bits, the bus is considered free.
self.curbit += 1
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
while True:
# State machine.
if self.state == 'IDLE':
# Wait for a dominant state (logic 0) on the bus.
(can_rx,) = self.wait({0: 'r'}) # EDITED: falling edge -> rising edge
self.sof = self.samplenum
self.dom_edge_seen(force = True)
self.state = 'GET BITS'
elif self.state == 'GET BITS':
# Wait until we're in the correct bit/sampling position.
pos = self.get_sample_point(self.curbit)
(can_rx,) = self.wait([{'skip': pos - self.samplenum}, {0: 'r'}]) # EDITED: falling edge -> rising edge
if (self.matched & (0b1 << 1)):
self.dom_edge_seen()
if (self.matched & (0b1 << 0)):
self.handle_bit(0 if can_rx else 1) # EDITED: Flip level
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment