Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Hyperband Search in TensorFlow
def model_builder(hp):
model = keras.Sequential()
model.add(keras.layers.Flatten(input_shape=(28, 28)))
# Tune the number of units in the first Dense layer
# Choose an optimal value between 32-512
hp_units = hp.Int('units', min_value = 32, max_value = 512, step = 32)
model.add(keras.layers.Dense(units = hp_units, activation = 'relu'))
model.add(keras.layers.Dense(10))
# Tune the learning rate for the optimizer
# Choose an optimal value from 0.01, 0.001, or 0.0001
hp_learning_rate = hp.Choice('learning_rate', values = [1e-2, 1e-3, 1e-4])
model.compile(optimizer = keras.optimizers.Adam(learning_rate = hp_learning_rate),
loss = keras.losses.SparseCategoricalCrossentropy(from_logits = True),
metrics = ['accuracy'])
return model
tuner = kt.Hyperband(model_builder,
objective = 'val_accuracy',
max_epochs = 10,
factor = 3,
directory = 'hyperband_starter',
project_name = 'intro_to_kt')
tuner.search(img_train, label_train, epochs = 10, validation_data = (img_test, label_test))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment