Last active
June 26, 2022 21:38
-
-
Save Rotsor/136dd9585b73495c7fd27d6d415b15b4 to your computer and use it in GitHub Desktop.
recN-exercise
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Challenge: https://github.com/effectfully/random-stuff/blob/master/RecN-challenge.agda | |
{-# OPTIONS --type-in-type #-} | |
open import Agda.Primitive | |
open import Agda.Builtin.Nat | |
open import Agda.Builtin.Sigma | |
open import Agda.Builtin.List | |
ℕ = Nat | |
data _≡_ {l : Level} {A : Set l} : A → A → Set where | |
refl : ∀ {x : A} → x ≡ x | |
coerce : ∀ {l} {A B : Set l} -> A ≡ B -> A -> B | |
coerce refl x = x | |
record KitRecN : Set₂ where | |
field | |
RecN : ℕ -> Set₁ | |
recN : ∀ n -> RecN n | |
Rec0-correct | |
: (RecN zero) | |
≡ (∀ {R : Set} -> (∀ {Q : Set} -> Q -> Q) -> R -> R) | |
Rec1-correct | |
: RecN 1 | |
≡ ∀ {A R} -> (∀ {Q : Set} -> (A -> Q) -> Q) -> (A -> R) -> R | |
Rec2-correct | |
: RecN 2 | |
≡ ∀ {A B R} -> (∀ {Q : Set} -> (A -> B -> Q) -> Q) -> (A -> B -> R) -> R | |
Rec3-correct | |
: RecN 3 | |
≡ ∀ {A B C R} -> (∀ {Q : Set} -> (A -> B -> C -> Q) -> Q) -> (A -> B -> C -> R) -> R | |
rec0-correct | |
: (λ {R} -> coerce Rec0-correct (recN zero) {R}) | |
≡ λ k f -> f | |
rec1-correct | |
: (λ {A R : Set} -> coerce Rec1-correct (recN 1) {A} {R}) | |
≡ λ k f -> f (k λ x -> x) | |
rec2-correct | |
: (λ {A B R : Set} -> coerce Rec2-correct (recN 2) {A} {B} {R}) | |
≡ λ k f -> f (k λ x y -> x) (k λ x y -> y) | |
rec3-correct | |
: (λ {A B C R : Set} -> coerce Rec3-correct (recN 3) {A} {B} {C} {R}) | |
≡ λ k f -> f (k λ x y z -> x) (k λ x y z -> y) (k λ x y z -> z) | |
CurriedFunction : List Set → Set → Set | |
CurriedFunction [] R = R | |
CurriedFunction (A ∷ rest) R = A → CurriedFunction rest R | |
curried-const : ∀ {args : List Set} → {R : Set} (x : R) → CurriedFunction args R | |
curried-const {[]} x = x | |
curried-const {(_ ∷ args)} x = λ _ → curried-const x | |
KTuple = λ (args : List Set) → (∀ {Q : Set} -> (CurriedFunction args Q) -> Q) | |
khead : ∀ {A args} → KTuple (A ∷ args) → A | |
khead k = k (λ x → curried-const x) | |
ktail : ∀ {A args} → KTuple (A ∷ args) → KTuple args | |
ktail k = (λ qf → k (λ _ → qf)) | |
apply-curried-function : ∀ {R : Set} → (args : List Set) → (f : CurriedFunction args R) → (k : KTuple args) → R | |
apply-curried-function [] f k = f | |
apply-curried-function (A ∷ args) f k = apply-curried-function args (f (khead k)) (ktail k) | |
Object = Σ Set (λ A → A) | |
obj : ∀ {T : Set} (x : T) → Object | |
obj {T} x = T , x | |
typ : Object → Set | |
typ (T , _) = T | |
val : ∀ o → typ o | |
val (_ , x) = x | |
-- WithTypes 3 f = obj (λ {A} {B} {C} → val (f (A ∷ B ∷ C ∷ []))) | |
WithTypes : (n : ℕ) → (List Set → Object) → Object | |
WithTypes zero f = f [] | |
WithTypes (suc n) f = obj (λ {A} → val (WithTypes n (λ v → f (A ∷ v)))) | |
recN-obj : ℕ → Object | |
recN-obj = λ n → WithTypes n (λ args → obj (λ { R } → | |
(λ (k : KTuple args) (f : (CurriedFunction args R)) → apply-curried-function _ f k))) | |
kitRecN = record { | |
RecN = _; | |
recN = λ n → val (recN-obj n); | |
Rec0-correct = refl; | |
Rec1-correct = refl; | |
Rec2-correct = refl; | |
Rec3-correct = refl; | |
rec0-correct = refl; | |
rec1-correct = refl; | |
rec2-correct = refl; | |
rec3-correct = refl | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment