Skip to content

Instantly share code, notes, and snippets.

@Saminu
Last active July 10, 2019 14:52
Show Gist options
  • Save Saminu/f93a55e1fa4d00c3e2dd7be5ef0aee8c to your computer and use it in GitHub Desktop.
Save Saminu/f93a55e1fa4d00c3e2dd7be5ef0aee8c to your computer and use it in GitHub Desktop.
app.py - Visualizing Uncertainty in Models using Pandas, Scikit Learn, Jinja, Flask, and D3.js
from flask import Flask, render_template, url_for, request
import pandas as pd
import pickle
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.externals import joblib
app = Flask(__name__)
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
df = pd.read_csv("data/ieee.csv", encoding="latin-1")
df = df[['Conference','Abstract']]
df.drop(df[df.isnull().any(axis=1)].index,inplace=True)
# Features and Labels
df['label'] = df['Conference'].map({'InfoVis': 0, 'SciVis': 1, 'VAST':2, 'Vis':3})
X = df['Abstract']
y = df['label']
# Extract Feature With CountVectorizer
cv = CountVectorizer()
X = cv.fit_transform(X)
# Fit the Data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.33, random_state=42)
# Naive Bayes Classifier
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
# Alternative Usage of Saved Model
# joblib.dump(clf, 'NB_spam_model.pkl')
# NB_spam_model = open('NB_spam_model.pkl','rb')
# clf = joblib.load(NB_spam_model)
if request.method == 'POST':
message = request.form['message']
data = [message]
vect = cv.transform(data).toarray()
y_pred = clf.predict(X_test)
my_prediction = clf.predict(vect)
my_report = classification_report(y_test, y_pred, output_dict=True)
# print(my_report)
return render_template('prediction.html',prediction = my_prediction, report = my_report)
if __name__ == '__main__':
app.run(debug=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment