Skip to content

Instantly share code, notes, and snippets.



Last active Aug 15, 2020
What would you like to do?
Parameter Convergence Checks in TFP
"""Convergence criterion callbacks for VI."""
import collections
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from typing import List, Optional
from tensorflow_probability.python.optimizer.convergence_criteria import convergence_criterion
ParameterState = collections.namedtuple("ParameterState", ["previous_value"])
def relative(current, prev, eps=1e-6):
"""Calculate relative tolerance."""
return (tf.abs(current - prev) + eps) / (tf.abs(prev) + eps)
def absolute(current, prev):
"""Calculate absolute tolerance."""
return tf.abs(current - prev)
_diff = dict(relative=relative, absolute=absolute)
class CheckParameterConvergence(convergence_criterion.ConvergenceCriterion):
"""Check convergence after certain number of iterations."""
def __init__(
every: int = 100,
tolerance: float = 1e-3,
diff: str = "relative",
min_num_steps: int = 20,
name: Optional[str] = None,
self.every = every
self.tolerance = tolerance
self.diff = _diff[diff]
self.ord = ord
super(CheckParameterConvergence, self).__init__(
min_num_steps=min_num_steps, name=name or "ParameterConvergence"
def flatten_params(params: List[tf.Tensor]) -> tf.Tensor:
"""Flattened view of parameters."""
flattened_tensor = [tf.reshape(var, shape=[-1]) for var in params]
return tf.concat(flattened_tensor, axis=0)
def _bootstrap(self, loss, grads, parameters):
del loss
del grads
return ParameterState(previous_value=self.flatten_params(parameters))
def _one_step(self, step, loss, grads, parameters, auxiliary_state):
del loss
del grads
return tf.cond(
step % self.every == 0,
lambda: tf.cond(
self.diff(self.flatten_params(parameters), auxiliary_state.previous_value),
< self.tolerance,
lambda: (True, ParameterState(previous_value=self.flatten_params(parameters))),
lambda: (False, ParameterState(previous_value=self.flatten_params(parameters))),
lambda: (False, ParameterState(previous_value=auxiliary_state.previous_value)),
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment