Created
September 24, 2023 01:15
-
-
Save ShihengDuan/754429d2d494d05dcb86b0c5958a87dd to your computer and use it in GitHub Desktop.
Process '.bil' RPISM data to netcdf files.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import xcdat as xc | |
import xarray as xa | |
import glob | |
import zipfile | |
from osgeo import gdal | |
import numpy as np | |
import argparse | |
import os | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--month', type=int) | |
parser.add_argument('--year', type=int, default=0) | |
parser.add_argument('--var', type=str, choices=['tmax', 'tmin', 'ppt']) | |
args = vars(parser.parse_args()) | |
return args | |
# PRISM lat lon: | |
lat = [49.9166666666664-0.0416666666667*i for i in range(621)] | |
lon = [-125+0.0416666666667*i for i in range(1405)] | |
args = get_args() | |
month = args['month'] | |
year = args['year'] | |
var = args['var'] | |
if not os.path.exists('netcdf_data/'+var+'/'): | |
os.makedirs('netcdf_data/'+var+'/', exist_ok=True) | |
month_data = [] | |
filepath = glob.glob('original_data/prism.oregonstate.edu/daily/'+var+'/'+str(year)+'/PRISM_'+var+'_stable_4kmD2_'+str(year)+str(month).zfill(2)+'*_bil.zip') | |
for file in sorted(filepath): | |
files = glob.glob('tmp/PRISM*') | |
for f in files: | |
os.remove(f) | |
# os.remove() # remove previous temp files. | |
print(file) | |
with zipfile.ZipFile(file, 'r') as zip_ref: | |
zip_ref.extractall('tmp/') | |
bil_file = glob.glob('tmp/PRISM_'+var+'_stable_4kmD2_*_bil.bil')[0] | |
dataset = gdal.Open(bil_file) | |
# Read data | |
num_bands = dataset.RasterCount | |
band = dataset.GetRasterBand(1) | |
data = band.ReadAsArray() | |
print(data.shape) | |
print(num_bands) | |
data_flat = data.flatten() | |
data_flat[data_flat<-9990] = np.NAN | |
data_plot = data_flat.reshape(data.shape) | |
data_xa = xa.DataArray(data=data_plot.reshape(1, data.shape[0], data.shape[1]), | |
dims=['time', 'lat', 'lon'], | |
coords={'time':[np.datetime64('1981-01-01')], | |
'lat':lat, 'lon':lon}, | |
name='tmax' | |
) | |
month_data.append(data_xa) | |
month_data = xa.concat(month_data, dim='time') | |
month_data.to_netcdf('netcdf_data/'+var+'/'+var+str(year)+str(month).zfill(2)+'.nc') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment