Skip to content

Instantly share code, notes, and snippets.

Avatar
🍀

Philipp Gayret SkPhilipp

🍀
View GitHub Profile
View docker-clean.sh
#!/bin/bash
docker ps -a -q | xargs docker kill
docker ps -a -q | xargs docker rm
docker network prune -f
docker system prune -f
docker volume prune -f
@SkPhilipp
SkPhilipp / polynomial-regression-predict.py
Created Apr 29, 2017
polynomial-regression-predict.py
View polynomial-regression-predict.py
# returns array([[ 154.98253014],
# [ 249.58103463]])
model.predict([[28], [30]])
@SkPhilipp
SkPhilipp / polynomial-regression.py
Last active Nov 13, 2017
polynomial-regression.py
View polynomial-regression.py
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
for n in [2, 5]:
# Create a model which includes a polynomial to the N-th degree
model = make_pipeline(PolynomialFeatures(n), Ridge())
# Train the model using the rolls and prices defined before
model.fit(rolls[:, np.newaxis], prices)
# Plot out what the model predicts
@SkPhilipp
SkPhilipp / linear-regression-predict.py
Created Apr 29, 2017
linear-regression-predict.py
View linear-regression-predict.py
# returns array([[ 175.61018994],
# [ 195.60932458]])
model.predict([[28], [30]])
View linear-regression-plot.py
from matplotlib import pyplot
import numpy as np
from sklearn import linear_model
# Taste of Hate rolls, from highest roll to lowest. First 99 entries.
rolls = np.array([30,30,30,30,30,30,30,29,29,29,29,29,29,29,29,29,29,28,28,28,28,28,28,28,28,28,28,28,27,27,27,27,27,27,26,26,26,26,26,26,25,25,25,25,25,24,24,24,24,24,24,24,24,24,23,23,23,23,23,23,23,23,23,23,23,23,23,23,22,22,22,22,22,22,21,21,21,20,20,20])
prices = np.array([233,186,200,372,233,233,372,150,150,214,165,170,150,200,145,155,200,186,165,186,186,186,145,140,140,232.5,110,135,140,139,139,139.5,139.5,140,150,115,186,120,110,140,110,120,125,130,115,279,116,110,110,120,140,120,115,110,120,186,114,104,186,110,110,105,93,114,115,130,145,120,130,186,99,112,110,110,135,186,118,110,110,115])
# Plot out all the rolls, prices and our prediction
pyplot.scatter(rolls, prices)
View linear-regression.py
from sklearn import linear_model
# Create train a linear regression model
model = linear_model.LinearRegression()
model.fit(rolls[:, np.newaxis], prices)
# Plot out all the rolls, prices
pyplot.scatter(rolls, prices)
pyplot.xlabel('roll')
pyplot.ylabel('price')
@SkPhilipp
SkPhilipp / install.sh
Last active Nov 13, 2017
My configuration for a hosted Jupyter Notebook
View install.sh
apt -y install python-pip
pip install jupyterlab
useradd -m jupyterhost
su - jupyterhost
mkdir notebooks
cat > .jupyter/jupyter_notebook_config.py << EOF
c.NotebookApp.open_browser = False
c.NotebookApp.token = ''
# Format "<hash method>:<salt>:<hash>", with salt appeneded to password. The example represents password "memes".
c.NotebookApp.password = u'sha1:faeeb4164638:80b264dcc5d723961c5f77a5b7efa20544116c0b'
You can’t perform that action at this time.