Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Lower and Higher Partial Moments
import numpy
import numpy.random as nrand
def lpm(returns, threshold, order):
# This method returns a lower partial moment of the returns
# Create an array he same length as returns containing the minimum return threshold
threshold_array = numpy.empty(len(returns))
threshold_array.fill(threshold)
# Calculate the difference between the threshold and the returns
diff = threshold_array - returns
# Set the minimum of each to 0
diff = diff.clip(min=0)
# Return the sum of the different to the power of order
return numpy.sum(diff ** order) / len(returns)
def hpm(returns, threshold, order):
# This method returns a higher partial moment of the returns
# Create an array he same length as returns containing the minimum return threshold
threshold_array = numpy.empty(len(returns))
threshold_array.fill(threshold)
# Calculate the difference between the returns and the threshold
diff = returns - threshold_array
# Set the minimum of each to 0
diff = diff.clip(min=0)
# Return the sum of the different to the power of order
return numpy.sum(diff ** order) / len(returns)
# Example Usage
r = nrand.uniform(-1, 1, 50)
print("hpm(0.0)_1 =", hpm(r, 0.0, 1))
print("lpm(0.0)_1 =", lpm(r, 0.0, 1))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.