Last active
July 7, 2021 09:20
-
-
Save SushantKalambe/230ce4036237b43108bfe16d7277c419 to your computer and use it in GitHub Desktop.
Function to compare count of reviews of electronic products from Ecommerce websites by date.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#import libraries | |
import numpy as np | |
import pandas as pd | |
import datetime | |
import matplotlib.pyplot as plt | |
import json | |
from matplotlib.pyplot import figure | |
# import json files containing reviews | |
# paste path of files | |
data=[open(r'.....\applewatch6-2960-reviews.json','rb'), | |
open(r'.....\applewatchSE-1709-reviews.json','rb'), | |
open(r'.....\fitbitversa2-5000-reviews.json','rb'), | |
open(r'.....\fitbitversa3-2494-reviews.json','rb'), | |
open(r'.....\samsunggalaxy2-2711-reviews.json','rb')] | |
# This function returns a list of dataframes with date and count of reviews sorted based on their dates | |
def plot_data(data): | |
data_df=[] | |
for i in data: | |
x=json.load(i) | |
x=pd.DataFrame(pd.DataFrame(x.items())[1][14]) | |
x['date'] = pd.to_datetime(x['date']) | |
month_year=[] | |
for j in x["date"]: | |
month_year.append(j.strftime("%m-%Y")) | |
x['month_year'] = month_year | |
x['month_year'] = pd.to_datetime(x['month_year']) | |
data_df.append(pd.DataFrame(x['month_year'].value_counts()).reset_index().rename(columns={"index" : "mon_year", | |
'month_year':'counts'}).sort_values(by='mon_year')) | |
return data_df | |
#Run the function | |
data_df=plot_data(data) | |
#create new list excluding the reviews from unwanted month.Here Unwanted month is 7th month as there are very less reviews in 7th month | |
new_data_df=[] | |
for i in range(0,len(data_df)): | |
new_data_df.append(data_df[i][data_df[i]['mon_year'].dt.month != 7]) | |
# Plots | |
figure(figsize=(18, 10), dpi=80) | |
for i in new_data_df: | |
plt.plot(i['mon_year'], i['counts'],marker='o') | |
plt.legend(['Apple','Bose','Jabra','Samsung','Powerbeats']) | |
plt.title('count Vs Year') | |
plt.xlabel('Year') | |
plt.ylabel('count Rate') | |
plt.show() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment