Skip to content

Instantly share code, notes, and snippets.

View SuvroBaner's full-sized avatar
🏠
Working from home

Suvro Banerjee SuvroBaner

🏠
Working from home
View GitHub Profile
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001, num_epochs = 1500, minibatch_size = 32, print_cost = True):
"""
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
Returns:
parameters -- parameters learnt by the model. They can then be used to predict.
"""
ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep a consistent result
seed = 3 # to keep a consistent result, used in mini-batches
(n_x, m) = X_train.shape # n_x : input size (input features); m : num of examples in the train set
def compute_cost(Z3, Y):
"""
Arguments:
Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
Y -- "true" labels vector placeholder, same shape as Z3
Returns:
cost - Tensor of the cost function
"""
def forward_propagation(X, parameters):
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
Z1 = tf.add(tf.matmul(W1, X), b1)
def initialize_parameters():
W1 = tf.get_variable("W1", [25, 12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", [25, 1], initializer = tf.zeros_initializer())
W2 = tf.get_variable("W2", [12, 25], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b2 = tf.get_variable("b2", [12, 1], initializer = tf.zeros_initializer())
W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())
parameters = {"W1" : W1,
"b1" : b1,
def create_placeholders(n_x, n_y):
"""
Arguments:
n_x -- scalar, size of an image vector (64 * 64 * 3 = 12288)
n_y -- scalar, number of classes (from 0 to 5, so n_y = 6)
Returns:
X -- placeholder for the data input, of shape [n_x, None] and dtype "tf.float32"
Y -- placeholder for the input labels, of shape [n_y, None] and dtype "tf.float32"
def one_hot_matrix(labels, Con):
"""
Creates a matrix where the i-th row corresponds to the ith class number and the jth column
corresponds to the jth training example. So if example j had a label i. Then entry (i,j)
will be 1.
"""
C = tf.constant(Con, name = 'C')
one_hot_matrix = tf.one_hot(indices = labels, depth = C, axis = 0)
with tf.Session() as sess:
one_hot = sess.run(one_hot_matrix)
def cost(logits, labels):
"""
    Computes the cost using the sigmoid cross entropy
    
    Arguments:
    logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)
    labels -- vector of labels y (1 or 0)
"""
z = tf.placeholder(tf.float32, name = 'z')
y = tf.placeholder(tf.float32, name = 'y')
def sigmoid(z):
x = tf.placeholder(tf.float32, name = 'x') # a placeholder tensor (variable)
sigmoid = tf.sigmoid(x) # compting sigmoid function of "x"
with tf.Session() as sess:
result = sess.run(sigmoid, feed_dict = {x : z}) # runnig the computation graph (sigmoid) using a feed_dict
return result
print(sigmoid(1))
print(sigmoid(10))
def linear_function():
X = np.random.randn(4, 1) # Initializes X to be a random tensor of shape (4,1)
W = np.random.randn(5, 4) # Initializes W to be a random tensor of shape (5,4)
b = np.random.randn(5, 1) # Initializes b to be a random tensor of shape (5,1)
Y = tf.add(tf.matmul(W, X), b) # computation graph
sess = tf.Session()
result = sess.run(Y) # evaluating the computation graph
import numpy as np
import tensorflow as tf
coefficients = np.array([[1.], [-10.], [25.]])
w = tf.Variable(0, dtype = tf.float32) # initializing the parameter as 0.
x = tf.placeholder(tf.float32, [3, 1]) # defining x as a 3x1 column vector
cost = x[0][0]*w**2 + x[1][0]*w + x[2][0]
train = tf.train.GradientDescentOptimizer(0.01).minimize(cost)