/TimeSeries Prophet Use Model Secret
Last active
March 29, 2021 07:23
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark.sql.functions import * | |
from pyspark.sql.types import * | |
import pandas as pd | |
from fbprophet import Prophet | |
import pickle | |
from sklearn.metrics import mean_absolute_error | |
#read data from Incorta | |
prod_demand_df = read("TimeSeriesNotebooks.HISTORICAL_PRODUCT_DEMAND") | |
prod_demand_df = prod_demand_df.withColumnRenamed("Date", "Order_Date") | |
prod_demand_df = prod_demand_df.select(date_format(col("Order_Date"),'yyyy-MM-dd').alias("Order_Date_Str"),col("Order_Demand"),col("Product_Category"),col("Warehouse")) | |
pdf = prod_demand_df.toPandas() | |
#Filter | |
npdf = pdf.loc[(pdf.Product_Category == 'Category_028') & (pdf.Warehouse == "Whse_J")] | |
#Add a column with datetime | |
npdf['pd_Datetime'] = pd.to_datetime(npdf['Order_Date_Str'] + ' 00:00:00') | |
npdf = npdf.set_index(pd.DatetimeIndex(npdf['pd_Datetime'])) | |
monthly_npdf = pd.DataFrame() | |
#Aggregate the order demand by month | |
monthly_npdf['Order_Demand'] = npdf['Order_Demand'].resample('MS').sum() | |
#Added date list to DataFrame | |
monthly_npdf['Order_Date'] = list(monthly_npdf.index) | |
#Date filter | |
monthly_npdf = monthly_npdf.loc[(monthly_npdf.Order_Date <= pd.to_datetime('2016-12-31 00:00:00'))] | |
#Rename the columns for Prophet | |
monthly_npdf.columns = ['y','ds'] | |
#Load ML model | |
ml_model_path = "/home/incorta/IncortaAnalytics/Tenants/demo/data/ml_model/" + "Order_Demand_Model.pckl" | |
with open(ml_model_path, 'rb') as fin: | |
prophet = pickle.load(fin) | |
#Prediction | |
future = list() | |
for i in range(1, 13): | |
date = '2017-%02d' % i | |
future.append([date]) | |
future = pd.DataFrame(future) | |
future.columns = ['ds'] | |
future['ds']= pd.to_datetime(future['ds']) | |
#Use the model(prophet) to make a forecast | |
forecast = prophet.predict(future) | |
#Save the predicted result | |
product_result = forecast[['ds','yhat']] | |
product_result['Product_Category'] = 'Category_028' | |
#Orginal and prediction only for specific Product_Category | |
monthly_npdf['Product_Category'] = 'Category_028' | |
product_result = product_result.append(monthly_npdf) | |
result_df = spark.createDataFrame(product_result) | |
save(result_df) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment