Created
October 17, 2019 01:47
-
-
Save Tadge-Analytics/89cfb323b926052d2b484334de77bd8e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyverse) | |
library(gmailr) | |
# authorise gmailr | |
search_term <- "from:(jobmail@s.seek.com.au) new jobs for tableau in Melbourne" | |
messageIDs <- messages(search = search_term, num_results = 5) | |
my_messages <- tibble(messageIDs) %>% | |
mutate(downloaded_data = map(messageIDs, ~.x$messages %>% | |
modify_depth(1, "id") %>% | |
as.vector() %>% | |
map(message))) %>% | |
unnest(downloaded_data) | |
write_rds(my_messages, "rds files/downloaded emails.rds") | |
################################## | |
my_messages <- readRDS("rds files/downloaded emails.rds") | |
key_info <- my_messages %>% | |
mutate(id = map_chr(downloaded_data, ~gmailr::id(.x)), | |
date = map_chr(downloaded_data, ~gmailr::date(.x)), | |
date = lubridate::dmy_hms(date) %>% as.Date(), | |
subject = map_chr(downloaded_data, ~gmailr::subject(.x))) | |
# from the downloaded data we also, most importantly, want to parse out the body of the email | |
# to see if we can possibly organise that into some kind of useful Excel table. | |
with_body_content <- key_info %>% | |
mutate(body_content = map(downloaded_data, ~.x$payload$parts[[1]]$parts[[1]]$body$data %>% | |
RCurl::base64Decode(txt = .) %>% | |
str_split("\r\n|\t") %>% | |
unlist() %>% | |
tibble %>% | |
rename(text = 1) %>% | |
filter(text != ""))) %>% | |
select(-downloaded_data) | |
header_cells <- c("SEEK Job Mail", | |
"Hi Julian", | |
"tableau in Melbourne", | |
"posted yesterday match your Saved Search:", | |
"new jobs. Update your SEEK Profile", | |
"Manage your Saved Searches and subscription preferences", | |
"https://www.seek.com.au/my-activity/saved-search", | |
"SEEK Profile Link", | |
"Update your SEEK Profile") | |
tidy_data_frame <- with_body_content %>% | |
mutate(body_content = map(body_content, ~filter(.x, !str_detect(text, paste(header_cells, collapse = "|"))))) %>% | |
unnest(body_content) | |
final_tidy <- tidy_data_frame %>% | |
separate_rows(text, sep = "Suburb: ") %>% | |
mutate(cell_content = case_when(str_detect(text, "Location:") ~ "Location", | |
str_detect(text, "Advertiser:") ~ "Advertiser", | |
str_detect(text, "Salary:") ~ "Salary", | |
str_detect(text, "View this job at:") ~ "Link", | |
str_detect(text, "Jobs you may have missed") ~ "Missed Jobs Start", | |
TRUE ~ "Other")) %>% | |
mutate(cell_content = case_when(lead(cell_content) == "Location" ~ "Position", | |
lead(cell_content) == "Advertiser" ~ "Location", | |
lead(cell_content, 2) == "Advertiser" ~ "Position", | |
TRUE ~ cell_content)) %>% | |
filter(cell_content != "Other") %>% | |
mutate(previous_email_jobs = if_else(str_detect(cell_content, "Missed Jobs Start"), 1L, NA_integer_)) %>% | |
group_by(id) %>% | |
fill(previous_email_jobs) %>% | |
filter(cell_content != "Missed Jobs Start") %>% | |
mutate(text = if_else(cell_content != "Position", | |
str_replace(text, paste0(cell_content, ": "), ""), | |
text)) %>% | |
mutate(position_row = if_else(cell_content == "Position", row_number(), NA_integer_), | |
rank_of_position = if_else(!is.na(position_row), rank(position_row), NA_real_)) %>% | |
fill(rank_of_position) %>% | |
select(-position_row) %>% | |
spread(cell_content, text) | |
final_tidy %>% | |
writexl::write_xlsx("output/data.xlsx") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment