import tensorflow as tf | |
import numpy as np | |
import matplotlib.pyplot as plt | |
learning_rate = 0.01 | |
training_epochs = 40 | |
trX = np.linspace(-1, 1, 101) | |
num_coeffs = 6 | |
trY_coeffs = [1, 2, 3, 4, 5, 6] | |
trY = 0 | |
for i in range(num_coeffs): | |
trY += trY_coeffs[i] * np.power(trX, i) | |
trY += np.random.randn(*trX.shape) * 1.5 | |
#plt.scatter(trX, trY) | |
#plt.show() | |
X = tf.placeholder(tf.float32) | |
Y = tf.placeholder(tf.float32) | |
def model(X, w): | |
terms = [] | |
for i in range(num_coeffs): | |
term = tf.multiply(w[i], tf.pow(X, i)) | |
terms.append(term) | |
return tf.add_n(terms) | |
w = tf.Variable([0.] * num_coeffs, name="parameters") | |
y_model = model(X, w) | |
cost = (tf.pow(Y-y_model, 2)) | |
train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
sess = tf.Session() | |
init = tf.global_variables_initializer() | |
sess.run(init) | |
for epoch in range(training_epochs): | |
for (x, y) in zip(trX, trY): | |
sess.run(train_op, feed_dict={X: x, Y: y}) | |
w_val = sess.run(w) | |
sess.close() | |
plt.scatter(trX, trY) | |
trY_new = 0 | |
for i in range(num_coeffs): | |
trY_new += w_val[i] * np.power(trX, i) | |
plt.plot(trX, trY_new, 'r') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment