Skip to content

Instantly share code, notes, and snippets.

@TrebledJ
Last active May 24, 2023 14:52
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save TrebledJ/5c45ba3366918352a3d56625a636bafa to your computer and use it in GitHub Desktop.
Save TrebledJ/5c45ba3366918352a3d56625a636bafa to your computer and use it in GitHub Desktop.
STM32F405 example for 440Hz sine wave generation.
// main.c
#include "stm32f4xx_hal.h"
#include <math.h>
#include <stdint.h>
DAC_HandleTypeDef hdac;
DMA_HandleTypeDef hdma_dac1;
DMA_HandleTypeDef hdma_dac2;
TIM_HandleTypeDef htim8;
void SystemClock_Config(void);
static void MX_DMA_Init(void);
static void MX_DAC_Init(void);
static void MX_TIM8_Init(void);
int main(void)
{
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Configure the system clock */
SystemClock_Config();
/* Initialize all configured peripherals */
MX_DMA_Init();
MX_DAC_Init();
MX_TIM8_Init();
#define SAMPLE_RATE 42000
#define BUFFER_SIZE 1024
#define FREQUENCY 440
uint16_t buffers[2][BUFFER_SIZE];
uint8_t curr = 0;
uint32_t t = 0;
// Start the timer.
HAL_TIM_Base_Start(&htim8);
// Optimisation: precompute constant.
float two_pi_f_over_sr = 2 * M_PI * FREQUENCY / SAMPLE_RATE;
while (1) {
// Prep the buffer.
uint16_t* buffer = buffers[curr];
for (int i = 0; i < BUFFER_SIZE; i++, t++) {
buffer[i] = 2047 * sin(two_pi_f_over_sr * t) + 2047;
}
// Wait for DAC to be ready.
while (HAL_DAC_GetState(&hdac) != HAL_DAC_STATE_READY)
;
// Start the DMA.
HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t*)buffer, BUFFER_SIZE, DAC_ALIGN_12B_R);
curr = !curr;
}
}
// The rest is code generated by STM32 CubeMX.
// Included for completeness.
// --------------------------------------------
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 168;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
Error_Handler();
}
}
static void MX_DAC_Init(void)
{
DAC_ChannelConfTypeDef sConfig = {0};
/** DAC Initialization
*/
hdac.Instance = DAC;
if (HAL_DAC_Init(&hdac) != HAL_OK) {
Error_Handler();
}
/** DAC channel OUT1 config
*/
sConfig.DAC_Trigger = DAC_TRIGGER_T8_TRGO;
sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK) {
Error_Handler();
}
/** DAC channel OUT2 config
*/
if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_2) != HAL_OK) {
Error_Handler();
}
}
static void MX_TIM8_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0};
htim8.Instance = TIM8;
htim8.Init.Prescaler = 0;
htim8.Init.CounterMode = TIM_COUNTERMODE_UP;
htim8.Init.Period = 4000 - 1;
htim8.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim8.Init.RepetitionCounter = 0;
htim8.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim8) != HAL_OK) {
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim8, &sClockSourceConfig) != HAL_OK) {
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim8) != HAL_OK) {
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim8, &sMasterConfig) != HAL_OK) {
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET;
sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET;
if (HAL_TIM_PWM_ConfigChannel(&htim8, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) {
Error_Handler();
}
sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
sBreakDeadTimeConfig.DeadTime = 0;
sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE;
sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH;
sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
if (HAL_TIMEx_ConfigBreakDeadTime(&htim8, &sBreakDeadTimeConfig) != HAL_OK) {
Error_Handler();
}
HAL_TIM_MspPostInit(&htim8);
}
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Stream4_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream4_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream4_IRQn);
/* DMA1_Stream5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream5_IRQn);
/* DMA1_Stream6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn);
}
void Error_Handler(void)
{
__disable_irq();
while (1) {}
}
// stm32f4xx_it.c
// If initialised correctly, you should have the usual interrupts, along with two DMA DAC
// interrupts (one for each DAC channel). These are auto-generated by CubeMX.
#include "main.h"
#include "stm32f4xx_it.h"
// -- snip --
extern DMA_HandleTypeDef hdma_dac1;
extern DMA_HandleTypeDef hdma_dac2;
// -- snip --
void SysTick_Handler(void)
{
HAL_IncTick();
}
void DMA1_Stream5_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_dac1);
}
void DMA1_Stream6_IRQHandler(void)
{
HAL_DMA_IRQHandler(&hdma_dac2);
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment