Last active
March 28, 2017 19:41
-
-
Save Trion129/bdad06ad8b2c9fee589f0ccf0aba101b to your computer and use it in GitHub Desktop.
Agents
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include "environment.hpp" | |
#include <iostream> | |
#include "NaiveAgent.hpp" | |
using namespace gym; | |
int main(int argc, char* argv[]) | |
{ | |
const std::string environment = "SpaceInvaders-v0"; | |
const std::string host = "kurg.org"; | |
const std::string port = "4040"; | |
double totalReward = 0; | |
size_t totalSteps = 0; | |
Environment env(host, port, environment); | |
env.compression(9); | |
env.monitor.start("./dummy/", true, true); | |
env.reset(); | |
env.render(); | |
// while (1) | |
// { | |
// arma::mat action = env.action_space.sample(); | |
// std::cout << "action: \n" << action << std::endl; | |
// env.step(action); | |
// totalReward += env.reward; | |
// totalSteps += 1; | |
// if (env.done) | |
// { | |
// break; | |
// } | |
// std::cout << "Current step: " << totalSteps << " current reward: " | |
// << totalReward << std::endl; | |
// } | |
Agent agent(210, 160); | |
agent.Play(env, 0.2); | |
std::cout << "Instance: " << env.instance << " total steps: " << totalSteps | |
<< " reward: " << totalReward << std::endl; | |
return 0; | |
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <cmath> | |
#include <mlpack/core.hpp> | |
#include <mlpack/core/optimizers/sgd/sgd.hpp> | |
#include <mlpack/methods/ann/layer/layer.hpp> | |
#include <mlpack/methods/ann/ffn.hpp> | |
#include <mlpack/methods/ann/layer/linear.hpp> | |
#include <mlpack/methods/ann/layer/dropout.hpp> | |
#include <mlpack/methods/ann/layer/leaky_relu.hpp> | |
#include <mlpack/methods/ann/layer/convolution.hpp> | |
using namespace mlpack; | |
using namespace optimization; | |
using namespace ann; | |
using namespace gym; | |
class Agent{ | |
public: | |
FFN<> model; | |
Agent(size_t inputW, size_t inputH){ | |
// 1 stream to 10 streams of depth, filter 5x5 | |
model.Add<Convolution<>>(1, 10, 5, 5, 1, 1, 0, 0, inputW, inputH); | |
model.Add<LeakyReLU<>>(); | |
// 10 depth to 15 depth, filter 5x5, strides of 2 | |
model.Add<Convolution<>>(10, 15, 5, 5, 2, 2); | |
model.Add<LeakyReLU<>>(); | |
model.Add<Linear<>>(115140, 700); | |
model.Add<LeakyReLU<>>(); | |
// Fully Connected from 700 -> 3 nodes | |
model.Add<Linear<>>(700, 3); | |
} | |
void Play(Environment& env, double explore){ | |
arma::mat result, actionMat, frame; | |
double maxRewardAction; | |
double totalReward = 0; | |
size_t totalSteps = 0; | |
while(1){ | |
//Get observation | |
frame = arma::vectorise(env.observation); | |
//Predict a reward for each action in current frame | |
model.Predict(frame, result); | |
if(arma::randu() > explore){ | |
//Pick the action with maximum reward | |
maxRewardAction = arma::mat(result.t()).index_max(); | |
} | |
else{ | |
//Pick random action number | |
maxRewardAction = floor(arma::randu() * 3); | |
} | |
//Make 1 hot vector for chosen action | |
actionMat = arma::zeros<arma::mat>(1, 3); | |
actionMat[maxRewardAction] = 1; | |
env.step(actionMat); | |
// New Matrix for correct result | |
// replace current reward with correct one | |
arma::mat correctResult(result); | |
correctResult[maxRewardAction] = env.reward; | |
// Optimize for the correct result given same frame | |
std::cout << "Corrected result:"; | |
for(int i : correctResult){ | |
std::cout << i << " "; | |
} | |
model.Train(std::move(frame), std::move(correctResult)); | |
if(env.done){ | |
break; | |
} | |
totalReward += env.reward; | |
totalSteps += 1; | |
std::cout << "Current step: " << totalSteps << " current reward: " | |
<< totalReward << std::endl; | |
} | |
} | |
}; |
Author
Trion129
commented
Mar 25, 2017
There are several instances of these errors, only the layer name is changed everytime, error log is very large so just pasted the first one. Should I post complete?
How do you build the project? Do you link against mlpack?
The naiveagent.hpp is in the cpp folder of gym_tcp_api
I can agent.Play() in example.cpp
So in build folder, cmake .. & make > log.txt 2>&1
So you didn't modified the CMakeList file?
Nope
So the provided CMakeList file doesn't link against mlpack, but that's necessary to use mlpack functions. Take a look at this gist and the comments: https://gist.github.com/zoq/1810dcd8261078fe35dd118d454f229b
Some comments:
- Per default, the FFN class uses negative log likelihood as output criterion, which expects a single target for each input, where the target is the index of the class (first class has index 1). Also, it is expected that the input contains log-probabilities of each class. I guess what you like to do is to minimize the mean squared error or something similar, if you do you don't have to change the output just the output layer:
FFN<MeanSquaredError<>> model;
- The input is a 3rd order tensor right (RGB image), so the input size is 210, 160 as specified but the input size of the first Convolution layer is 3 and not 1:
model.Add<Convolution<>>(3, 10, 5, 5, 1, 1, 0, 0, inputW, inputH);
- I haven't really thought about this, but if you use stride 2 and kernel size 1 shouldn't you use pad = 1?
model.Add<Convolution<>>(10, 2, 5, 5, 2, 2, 1, 1);
So at the end it should look like:
FFN<MeanSquaredError<>> model;
Agent(size_t inputW, size_t inputH){
// 1 stream to 10 streams of depth, filter 5x5
model.Add<Convolution<>>(3, 10, 5, 5, 1, 1, 0, 0, inputW, inputH);
model.Add<LeakyReLU<>>();
// 10 depth to 15 depth, filter 5x5, strides of 2
model.Add<Convolution<>>(10, 2, 5, 5, 2, 2, 1, 1);
model.Add<LeakyReLU<>>();
model.Add<Linear<>>(15708, 700);
model.Add<LeakyReLU<>>();
// Fully Connected from 700 -> 3 nodes
model.Add<Linear<>>(700, 3);
}
Let me know if that was helpful.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment