Last active
March 19, 2019 02:32
PythonNN_demo003
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def train(self, input_list, target_list): | |
inputs = np.array(input_list, ndmin=2).T | |
targets = np.array(target_list, ndmin=2).T | |
# signals into hidden layer | |
hidden_inputs = np.dot(self.wih, inputs) | |
# signals from hidden layer | |
hidden_outputs = self.activation_func(hidden_inputs) | |
# signals into output | |
final_inputs = np.dot(self.who, hidden_outputs) | |
# signals from output | |
outputs = self.activation_func(final_inputs) | |
# error between hidden and output | |
output_errors = targets - outputs | |
# error between input and hiddent | |
hidden_errors = np.dot(self.who.T, output_errors) | |
# updating weight between hidden and output layers | |
self.who += self.alpha * np.dot((output_errors * outputs * (1.0 - outputs)), | |
np.transpose(hidden_outputs)) | |
# updating weight between input and hidden | |
self.wih += self.alpha * np.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), | |
np.transpose(inputs)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment