Skip to content

Instantly share code, notes, and snippets.


Victor SANH VictorSanh

View GitHub Profile
# Cuda for Ubuntu18.04
sudo dpkg -i /tmp/${CUDA_REPO_PKG}
sudo apt-key adv --fetch-keys
rm -f /tmp/${CUDA_REPO_PKG}
sudo apt-get update
sudo apt-get install cuda-drivers -y
sudo apt-get install cuda -y
import torchvision.models as models
resnet18 = models.resnet18()
from transformers import BertEmbeddings, BertEncoder
class MMBDEmbeddings(nn.Module):
def __init__(self,
text_mod_embds = BertEmbeddings, # Or your favorite bidirectional transformer
vision_mod_embds = resnet18): # Or your favorite vision model
import tensorflow as tf
from transformers import BertTokenizer, TFBertForSequenceClassification
import numpy as np
# seq_length = 128
# nb_examples = 1
# voc_size = 25000
# input_ids = tf.random.uniform((nb_examples,seq_length),
# maxval=voc_size,
VictorSanh /
Last active Nov 22, 2021
Knowledge Distilation
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Optimizer
KD_loss = nn.KLDivLoss(reduction='batchmean')
def kd_step(teacher: nn.Module,
student: nn.Module,
temperature: float,
# Copyright (c) 2017-present, Moscow Institute of Physics and Technology.
# All rights reserved.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree. An additional grant
# of patent rights can be found in the PATENTS file in the same directory.
from parlai.core.params import ParlaiParser
from parlai.core.agents import Agent
from parlai.core.utils import display_messages
from projects.convai2.models.ftlm.wild_eval_world import ConvAIWorld
VictorSanh /
Created Aug 14, 2018
RE model - Reimplementation from G. Bekoulis
# coding: utf-8
import logging
import math
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter, Variable