Created
April 14, 2024 01:47
-
-
Save VictorSanh/625fe84db8a64e8ae562e713f34bf946 to your computer and use it in GitHub Desktop.
first stab at idefics2 + trl sft (adapted from the llava trl sft training example)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# flake8: noqa | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
# regular: | |
python examples/scripts/vsft.py \ | |
--model_name_or_path="HuggingFaceM4/idefics2-8b" \ | |
--report_to="wandb" \ | |
--learning_rate=1.4e-5 \ | |
--per_device_train_batch_size=8 \ | |
--gradient_accumulation_steps=1 \ | |
--output_dir="data/vsft-idefics2-8b-hf" \ | |
--logging_steps=5 \ | |
--num_train_epochs=1 \ | |
--push_to_hub \ | |
--gradient_checkpointing \ | |
--remove_unused_columns=False \ | |
--torch_dtype=float16 \ | |
--fp16=True \ | |
--dataset_name=HuggingFaceH4/llava-instruct-mix-vsft \ | |
# peft: | |
python examples/scripts/vsft.py \ | |
--model_name_or_path="HuggingFaceM4/idefics2-8b" \ | |
--report_to="wandb" \ | |
--learning_rate=1.4e-5 \ | |
--per_device_train_batch_size=8 \ | |
--gradient_accumulation_steps=1 \ | |
--output_dir="data/vsft-idefics2-8b-hf" \ | |
--logging_steps=5 \ | |
--num_train_epochs=1 \ | |
--push_to_hub \ | |
--gradient_checkpointing \ | |
--remove_unused_columns=False \ | |
--torch_dtype=float16 \ | |
--fp16=True \ | |
--dataset_name=HuggingFaceH4/llava-instruct-mix-vsft \ | |
--use_peft=True \ | |
--lora_r=64 \ | |
--lora_alpha=16 \ | |
--lora_target_modules=all-linear" | |
# evaluation: | |
To evaluate, first install the lmms-eval framework: pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git | |
then run: | |
accelerate launch --num_processes=8 -m lmms_eval \ | |
--model idefics2_hf \ | |
--model_args pretrained=HuggingFaceM4/idefics2-8b \ | |
--tasks mmbench \ | |
--batch_size 1 \ | |
--output_path ./logs/ \ | |
--log_sample | |
""" | |
import logging | |
import os | |
from contextlib import nullcontext | |
TRL_USE_RICH = os.environ.get("TRL_USE_RICH", False) | |
from trl.commands.cli_utils import init_zero_verbose, SftScriptArguments, TrlParser | |
if TRL_USE_RICH: | |
init_zero_verbose() | |
FORMAT = "%(message)s" | |
from rich.console import Console | |
from rich.logging import RichHandler | |
import torch | |
from accelerate import Accelerator | |
from datasets import load_dataset | |
from tqdm.rich import tqdm | |
from transformers import AutoTokenizer, AutoProcessor, TrainingArguments, Idefics2ForConditionalGeneration | |
from trl import ( | |
ModelConfig, | |
RichProgressCallback, | |
SFTTrainer, | |
get_peft_config, | |
get_quantization_config, | |
get_kbit_device_map, | |
) | |
tqdm.pandas() | |
if TRL_USE_RICH: | |
logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[RichHandler()], level=logging.INFO) | |
if __name__ == "__main__": | |
parser = TrlParser((SftScriptArguments, TrainingArguments, ModelConfig)) | |
args, training_args, model_config = parser.parse_args_and_config() | |
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) | |
# Force use our print callback | |
if TRL_USE_RICH: | |
training_args.disable_tqdm = True | |
console = Console() | |
################ | |
# Model, Tokenizer & Processor | |
################ | |
# IDEFICS2_CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" | |
torch_dtype = ( | |
model_config.torch_dtype | |
if model_config.torch_dtype in ["auto", None] | |
else getattr(torch, model_config.torch_dtype) | |
) | |
quantization_config = get_quantization_config(model_config) | |
model_kwargs = dict( | |
revision=model_config.model_revision, | |
trust_remote_code=model_config.trust_remote_code, | |
attn_implementation=model_config.attn_implementation, | |
torch_dtype=torch_dtype, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
# tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True) | |
# tokenizer.chat_template = IDEFICS2_CHAT_TEMPLATE | |
processor = AutoProcessor.from_pretrained(model_config.model_name_or_path) | |
# processor.tokenizer = tokenizer | |
model = Idefics2ForConditionalGeneration.from_pretrained(model_config.model_name_or_path, **model_kwargs) | |
################ | |
# Create a data collator to encode text and image pairs | |
################ | |
class Idefics2DataCollator: | |
def __init__(self, processor): | |
self.processor = processor | |
self.image_token_id = processor.tokenizer.additional_special_tokens_ids[ | |
processor.tokenizer.additional_special_tokens.index("<image>") | |
] | |
def __call__(self, examples): | |
texts = [] | |
images = [] | |
for example in examples: | |
if len(example["images"]) > 1: | |
raise ValueError("This collator only supports one image per example") | |
messages = example["messages"] | |
text = self.processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=False | |
) | |
texts.append(text.strip()) | |
images.append(example["images"]) | |
batch = self.processor(texts, images, return_tensors="pt", padding=True) | |
labels = batch["input_ids"].clone() | |
if self.processor.tokenizer.pad_token_id is not None: | |
labels[labels == self.processor.tokenizer.pad_token_id] = self.image_token_id | |
batch["labels"] = labels | |
return batch | |
data_collator = Idefics2DataCollator(processor) | |
################ | |
# Dataset | |
################ | |
raw_datasets = load_dataset(args.dataset_name) | |
train_dataset = raw_datasets["train"] | |
eval_dataset = raw_datasets["test"] | |
################ | |
# Optional rich context managers | |
############### | |
init_context = nullcontext() if not TRL_USE_RICH else console.status("[bold green]Initializing the SFTTrainer...") | |
save_context = ( | |
nullcontext() | |
if not TRL_USE_RICH | |
else console.status(f"[bold green]Training completed! Saving the model to {training_args.output_dir}") | |
) | |
################ | |
# Training | |
################ | |
with init_context: | |
trainer = SFTTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
dataset_text_field="text", # need a dummy field | |
tokenizer=processor.tokenizer, | |
peft_config=get_peft_config(model_config), | |
callbacks=[RichProgressCallback] if TRL_USE_RICH else None, | |
data_collator=data_collator, | |
dataset_kwargs={"skip_prepare_dataset": True}, | |
) | |
trainer.train() | |
with save_context: | |
trainer.save_model(training_args.output_dir) | |
trainer.push_to_hub() | |
if Accelerator().is_main_process: | |
processor.push_to_hub(training_args.hub_model_id) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment