Victor SANH VictorSanh
- Parisian in New York City
- https://twitter.com/SanhEstPasMoi
View gcp_ubuntu1804_cuda.sh
# Cuda for Ubuntu18.04 | |
CUDA_REPO_PKG=cuda-repo-ubuntu1804_10.1.243-1_amd64.deb | |
wget -O /tmp/${CUDA_REPO_PKG} http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/${CUDA_REPO_PKG} | |
sudo dpkg -i /tmp/${CUDA_REPO_PKG} | |
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub | |
rm -f /tmp/${CUDA_REPO_PKG} | |
sudo apt-get update | |
sudo apt-get install cuda-drivers -y | |
sudo apt-get install cuda -y |
View rough_draft.py
import torchvision.models as models | |
resnet18 = models.resnet18() | |
from transformers import BertEmbeddings, BertEncoder | |
class MMBDEmbeddings(nn.Module): | |
def __init__(self, | |
text_mod_embds = BertEmbeddings, # Or your favorite bidirectional transformer | |
vision_mod_embds = resnet18): # Or your favorite vision model |
View tensorflow_serving_transformers.py
import tensorflow as tf | |
from transformers import BertTokenizer, TFBertForSequenceClassification | |
import numpy as np | |
# seq_length = 128 | |
# nb_examples = 1 | |
# voc_size = 25000 | |
# input_ids = tf.random.uniform((nb_examples,seq_length), | |
# maxval=voc_size, |
View kd.py
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.optim import Optimizer | |
KD_loss = nn.KLDivLoss(reduction='batchmean') | |
def kd_step(teacher: nn.Module, | |
student: nn.Module, | |
temperature: float, |
View wild_eval_bot.py
# Copyright (c) 2017-present, Moscow Institute of Physics and Technology. | |
# All rights reserved. | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. An additional grant | |
# of patent rights can be found in the PATENTS file in the same directory. | |
from parlai.core.params import ParlaiParser | |
from parlai.core.agents import Agent | |
from parlai.core.utils import display_messages | |
from projects.convai2.models.ftlm.wild_eval_world import ConvAIWorld |
View relation_extraction.py
# coding: utf-8 | |
import logging | |
import math | |
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.parameter import Parameter, Variable |