Skip to content

Instantly share code, notes, and snippets.

@Vinithavn
Created December 2, 2020 07:36
class Decoder(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, output_length, dec_units,att_units):
super().__init__()
self.onestep=One_Step_Decoder(vocab_size, embedding_dim, output_length, dec_units,att_units)
def call(self, input_to_decoder,encoder_output,state_1)
all_outputs=tf.TensorArray(tf.float32,input_to_decoder.shape[1],name="output_array")
for step in range(input_to_decoder.shape[1]):
output,state_1,alpha=self.onestep(input_to_decoder[:,step:step+1],encoder_output,state_1)
all_outputs=all_outputs.write(step,output)
all_outputs=tf.transpose(all_outputs.stack(),[1,0,2])
return all_outputs
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment