Skip to content

Instantly share code, notes, and snippets.

Vladimir Reshetnikov VladimirReshetnikov

Block or report user

Report or block VladimirReshetnikov

Hide content and notifications from this user.

Learn more about blocking users

Contact Support about this user’s behavior.

Learn more about reporting abuse

Report abuse
View GitHub Profile
View Quartic.m
-1250619088240 - 5699613103136 17^(1/4) - 302713574416 √17 - 1382093480160 17^(3/4) - 50584 Sqrt[442 + 86 √17] (872389 + 3990342 17^(1/4) + 212867 √17 + 968362 17^(3/4)) + 12646 Sqrt[17 + 7 √17 + Sqrt[442 + 86 √17]] (71776278 + 31394478 17^(1/4) + 17402458 √17 + 7617410 17^(3/4) + Sqrt[442 + 86 √17] (2541415 + 1113007 17^(1/4) + 617009 √17 + 269609 17^(3/4))) + (68 (-50115985137 + 12192537437 17^(1/4) - 12153916727 √17 + 2958221227 17^(3/4)) + 2 Sqrt[442 + 86 √17] (-60354041325 + 14703031349 17^(1/4) - 14641623707 √17 + 3562021267 17^(3/4))) Sqrt[53 + 4 17^(1/4) + 11 √17 + 4 17^(3/4) - Sqrt[442 + 86 √17] + (16 (17 + 3 17^(1/4) + 3 √17 + 17^(3/4)))/Sqrt[17 + 7 √17 + Sqrt[442 + 86 √17]]] + (149116183196 √17 + Sqrt[442 + 86 √17] (21768725794 - 4227540926 17^(1/4) + 5284635694 √17 - 1026749938 17^(3/4)) - 4 (-153753091585 + 29827256959 17^(1/4) + 7230851801 17^(3/4))) Sqrt[442 + 136 17^(1/4) + 118 √17 + 24 17^(3/4) + Sqrt[442 + 86 √17] (9 + 17^(1/4) + √17 + 17^(3/4)) + 4 (17 + 3 17^(1/4) + 3 √17 + 17^(3/4)) Sqrt[
View Root.m
(Sqrt[5 - 2 √5] + Sqrt[15 + 4 √15] + (√3 - 2) (1 + Sqrt[15 + 8 √3 + 6 √5 + 4 √15]))/8 - Sqrt[(Sqrt[5 - 2 √5] + Sqrt[15 + 4 √15] + (√3 - 2) (1 + Sqrt[15 + 8 √3 + 6 √5 + 4 √15]))^2 - 8 (3 √3 + 2 √5 - 3 + (√3 - 3) (3 15^(1/4) + 15^(3/4))/(3 Sqrt[2]) - Sqrt[2 + √5] ((5^(1/4) (√3 - 1) (√5 - 2)) + 3^(1/4) (3 + √3 - 2 √5) Sqrt[4 + √15]))]/8
View Root.m
(7 Cos[ArcTan[15 √3]/3] (-676 + 390 √13 + 15 13^(5/6) (11 - 6 √3)^(1/3) + 15 13^(5/6) (11 + 6 √3)^(1/3) - 5 (13 (16 + 9 √3))^(1/3) (-38 + (13 (9301831256 + 5187457323 √3))^(1/3)) + 8320 (13 (16 + 9 √3))^(2/3) Cos[2 ArcTan[15 √3]/3]) - Cos[ArcTan[15 √3]/3]^2 (-5642 + 13^(5/6) (16 + 9 √3)^(1/3) (255 Cos[ArcTan[15 √3]/6] + 1456 Sin[ArcTan[15 √3]/6])) - Sin[ArcTan[15 √3]/3] (910 √39 + 245 √3 13^(5/6) (11 - 6 √3)^(1/3) - 294 (39 (27 + 16 √3))^(1/3) - 7 13^(1/6) (16 + 9 √3)^(2/3) (210 - 175 √3 - 276 √13 + 75 √39) + 2184 (13 (16 + 9 √3))^(2/3) Cos[2 ArcTan[15 √3]/3] + (3822 - 5 13^(5/6) (16 + 9 √3)^(1/3) (79 Cos[ArcTan[15 √3]/6] + 78 √3 Sin[ArcTan[15 √3]/6])) Sin[ArcTan[15 √3]/3]) - Sqrt[-38220 (3692 Cos[ArcTan[15 √3]/3]^2 + Cos[ArcTan[15 √3]/3] (-4732 + 765 √13 - 345 13^(2/3) (6 (81 + 43 √3))^(1/3) + 26 (13 (16 + 9 √3))^(1/3) (5 (1 + 9 √3) Cos[ArcTan[15 √3]/6] + 3 (-51 + 5 √3) Sin[ArcTan[15 √3]/6]) + 6 13^(1/6) (16 + 9 √3)^(2/3) (5 (-98 - 83 √3 + 40 √13 + 21 √39) Cos[ArcTan[15 √3]/6] + 3 (429 - 137 √13) Sin[ArcTan[
View Root.m
With[{α = (22189898221551580587295103 + 256420157581401 √273)^(1/3), β = (22189898221551580587295103 - 256420157581401 √273)^(1/3)}, With[{γ = -12223877158208436551615433323264320348453289856220356097136204891255075243888 (6744188161 + Sqrt[3 (45484073947739961136 + (94097496888629183883488747614349094257225845008058652212858 - 24342677786663189744703053762296981866 √273)^(1/3) + (94097496888629183883488747614349094257225845008058652212858 + 24342677786663189744703053762296981866 √273)^(1/3))]) + 384 (-331593827486776791333233292004824066023789497199318313273300934638776183 + 5772180093919156765759073482572660102392843383718979840 √273) α - 296120273092910610 (-5310924670648957920594074293108375559243602253 + 76714420184434614579207282363991227 √273) α^2 + 884736 (-331593452855283305829953212873689032921358721450252255011637111056573047 + 1443045023037339674869983416797000691436640645427143680 √273 - 5147838861998103421526432471595757896264127200 α^2) β - 3143859191221552337387520 (331932791396515866137119897
View Root.m
With[{α = (22189898221551580587295103 + 256420157581401 √273)^(1/3), β = (22189898221551580587295103 - 256420157581401 √273)^(1/3)}, With[{γ = -12223877158208436551615433323264320348453289856220356097136204891255075243888 (6744188161 + Sqrt[3 (45484073947739961136 + (94097496888629183883488747614349094257225845008058652212858 - 24342677786663189744703053762296981866 √273)^(1/3) + (94097496888629183883488747614349094257225845008058652212858 + 24342677786663189744703053762296981866 √273)^(1/3))]) + 384 (-331593827486776791333233292004824066023789497199318313273300934638776183 + 5772180093919156765759073482572660102392843383718979840 √273) α - 296120273092910610 (-5310924670648957920594074293108375559243602253 + 76714420184434614579207282363991227 √273) α^2 + 884736 (-331593452855283305829953212873689032921358721450252255011637111056573047 + 1443045023037339674869983416797000691436640645427143680 √273 - 5147838861998103421526432471595757896264127200 α^2) β - 3143859191221552337387520 (331932791396515866137119897
View Root.m
With[{α = (22189898221551580587295103 + 256420157581401*Sqrt[273])^(1/3), β = (22189898221551580587295103 - 256420157581401*Sqrt[273])^(1/3)}, With[{γ = -12223877158208436551615433323264320348453289856220356097136204891255075243888*(6744188161 + Sqrt[3*(45484073947739961136 + (94097496888629183883488747614349094257225845008058652212858 - 24342677786663189744703053762296981866*Sqrt[273])^(1/3) + (94097496888629183883488747614349094257225845008058652212858 + 24342677786663189744703053762296981866*Sqrt[273])^(1/3))]) + 384*(-331593827486776791333233292004824066023789497199318313273300934638776183 + 5772180093919156765759073482572660102392843383718979840*Sqrt[273])*α - 296120273092910610*(-5310924670648957920594074293108375559243602253 + 76714420184434614579207282363991227*Sqrt[273])*α^2 + 884736*(-331593452855283305829953212873689032921358721450252255011637111056573047 + 1443045023037339674869983416797000691436640645427143680*Sqrt[273] - 5147838861998103421526432471595757896264127200*α^2)*β - 3143859191221552337
View Root.m
(3 + 3*(13*(16 - 9*Sqrt[3]))^(1/3) + 3*(13*(16 + 9*Sqrt[3]))^(1/3) + Sqrt[2 + Sqrt[13]]*(13^(3/4) + (2*((143 - 78*Sqrt[3])^(1/3) + (143 + 78*Sqrt[3])^(1/3)))/13^(1/4) - 13^(1/4)*(2 + (143 - 78*Sqrt[3])^(1/3) + (143 + 78*Sqrt[3])^(1/3))))/54 - ((29246464*(-1541592 + 37908*Sqrt[13] - 972*(13*(16 - 9*Sqrt[3]))^(1/3)*(104 + 3*Sqrt[13]) - 972*(13*(16 + 9*Sqrt[3]))^(1/3)*(104 + 3*Sqrt[13]) + 27*13^(1/6)*(11 - 6*Sqrt[3])^(2/3)*(2106 + Sqrt[26*(541385 - 96457*Sqrt[13])]) + 27*13^(1/6)*(11 + 6*Sqrt[3])^(2/3)*(2106 + Sqrt[26*(541385 - 96457*Sqrt[13])]) + 2*13^(1/4)*Sqrt[2 + Sqrt[13]]*(-31161 - 40053*Sqrt[13] + 1885*13^(5/6)*(16 - 9*Sqrt[3])^(1/3) - 19493*(13*(16 - 9*Sqrt[3]))^(1/3) + 16*13^(1/6)*(16 - 9*Sqrt[3])^(2/3)*(-52 + 17*Sqrt[13]) + 16*13^(1/6)*(16 + 9*Sqrt[3])^(2/3)*(-52 + 17*Sqrt[13]) + (13*(16 + 9*Sqrt[3]))^(1/3)*(-19493 + 1885*Sqrt[13])) + 3*(143 + 78*Sqrt[3])^(1/3)*(-12636 + 17010*Sqrt[13] + Sqrt[13 + 2*Sqrt[13]]*(16385 - 1411*Sqrt[13] + 16*(13*(16 - 9*Sqrt[3]))^(1/3)*(17 - 4*Sqrt[13]) + 16*(13*(16 + 9*Sqrt
View Root.m
(-2 + Sqrt[3] + ((5/3)^(1/4)*(3 + Sqrt[15]))/Sqrt[2] - 2^(1/4)/Sqrt[3/(37*Sqrt[2]
- 10*3^(3/4)*5^(1/4) - 10*3^(1/4)*5^(3/4) - 18*Sqrt[6] - 16*Sqrt[10] + 21*15^(1/4)
+ 7*15^(3/4) + 6*Sqrt[30] + 8*2^(1/4)*Sqrt[108*Sqrt[2] - 39*3^(3/4)*5^(1/4)
- 35*3^(1/4)*5^(3/4) - 57*Sqrt[6] - 44*Sqrt[10] + 67*15^(1/4) + 19*15^(3/4)
+ 25*Sqrt[30]]*Cos[ArcTan[(6*Sqrt[102*(201 - 116*Sqrt[3] - 90*Sqrt[5] + 52*Sqrt[15])
+ 3*Sqrt[2]*15^(1/4)*(2442 - 1409*Sqrt[3] - 1107*Sqrt[5] + 638*Sqrt[15])])
/(Sqrt[2]*15^(1/4)*(996 - 577*Sqrt[3] - 459*Sqrt[5] + 264*Sqrt[15])
+ 2*(1403 - 804*Sqrt[3] - 634*Sqrt[5] + 366*Sqrt[15]))]/3])] - Sqrt[(2*(74 - 36*Sqrt[3]
- 32*Sqrt[5] + 12*Sqrt[15] + Sqrt[2]*15^(1/4)*(21 - 10*Sqrt[3] - 10*Sqrt[5] + 7*Sqrt[15])
+ (4*2^(1/4)*(-216 + 114*Sqrt[3] + 88*Sqrt[5] - 50*Sqrt[15] + Sqrt[2]*15^(1/4)
View Root.m
Root[-1 + 30 # + 170 #^2 + 672 #^3 - 6956 #^4 - 6808 #^5 + 42872 #^6 - 56576 #^7 - 241616 #^8 + 712800 #^9 +
1099296 #^10 - 2718208 #^11 - 3427264 #^12 + 5028992 #^13 + 8030592 #^14 - 3956736 #^15 - 14783232 #^16 - 2065920 #^17 +
20241920 #^18 + 7954432 #^19 - 19317760 #^20 - 7817216 #^21 + 12445696 #^22 + 3342336 #^23 - 5435392 #^24 - 122880 #^25 +
1662976 #^26 - 393216 #^27 - 344064 #^28 + 98304 #^29 + 32768 #^30 &, 4] ==
With[{α = 1/5 ArcCos[(255300649 + 251245525 Sqrt[5])/(4 * 11^8)], β = Sqrt[25085 - 6802 Sqrt[5]]},
With[{κ = 11 β Sin[α], λ = β Sin[2 α], μ = 11 * 811 Cos[α], ν = 811 Cos[2 α]},
With[{η = 11^3 * 811 (55 - 14 Sqrt[11]) -
11 κ (2474 + 1479 Sqrt[5] - 763 Sqrt[11] - 385 Sqrt[55]) + λ (22127 + 140925 Sqrt[5] + 3421 Sqrt[11] - 35431 Sqrt[55]) -
11 μ (365 + 38 Sqrt[5] - 107 Sqrt[11] - 9 Sqrt[55]) - ν (39510 - 14118 Sqrt[5] - 12837 Sqrt[11] + 3179 Sqrt[55]),
ρ = 11^3 * 811 (Sqrt[11] - 3) +
View Root.m
With[{α = 1/5 ArcCos[(255300649 + 251245525 Sqrt[5])/857435524],
β = Sqrt[25085 - 6802 Sqrt[5]]},
With[{γ = 1079441 (55 - 14 Sqrt[11]) +
98131 (-365 - 38 Sqrt[5] + 107 Sqrt[11] + 9 Sqrt[55]) Cos[α] -
811 (39510 - 14118 Sqrt[5] - 12837 Sqrt[11] + 3179 Sqrt[55]) Cos[2 α] +
121 (-2474 - 1479 Sqrt[5] + 763 Sqrt[11] + 385 Sqrt[55]) β Sin[α] +
(22127 + 140925 Sqrt[5] + 3421 Sqrt[11] - 35431 Sqrt[55]) β Sin[2 α]},
With[{η = 23747702 (-33 + 20 Sqrt[11]) -
98131 (-2453 + 2035 Sqrt[5] + 505 Sqrt[11] + 113 Sqrt[55]) Cos[α] -
17842 (-146174 - 13325 Sqrt[5] + 37995 Sqrt[11] + 1031 Sqrt[55]) Cos[2 α] +
You can’t perform that action at this time.