Last active
August 29, 2015 14:00
-
-
Save W-Net-AI/11205899 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
///////////////////////////////C++/////////////////////////////////////////// | |
This is the main part, a snippet of a face detection program, runable if you have OpenCV installed | |
#include "opencv2/objdetect/objdetect.hpp" | |
#include "opencv2/highgui/highgui.hpp" | |
#include "opencv2/imgproc/imgproc.hpp" | |
#include "opencv2/highgui/highgui_c.h" | |
#include "opencv2/imgproc/imgproc_c.h" | |
#include <iostream> | |
#include <stdio.h> | |
using namespace std; | |
using namespace cv; | |
//My c wrapper for vector<Rect>, to convert a vector<Rect> to a c array. Rect is a C++ class | |
typedef vector<Rect> vector_Rect; | |
Rect* std_vectorrToCArray(vector_Rect* s) { | |
return s->data(); | |
} | |
// my c wrapper for OpenCV's detectMultiScale here: http://docs.opencv.org/modules/objdetect/doc/cascade_classification.html?highlight=detectmultiscale#cascadeclassifier-detectmultiscale | |
void cv_CascadeClassifier_detectMultiScale(CascadeClassifier* self, Mat* image, vector_Rect* objects, double scaleFactor, int minNeighbors, int flags, Size* minSize, Size* maxSize) { | |
self->detectMultiScale(*image, *objects, scaleFactor, minNeighbors, flags, *minSize, *maxSize); | |
} | |
// Global variables | |
// create data to use in detectMultiScale | |
string face_cascade_name = "/home/w/Desktop/opencv-master/data/haarcascades/haarcascade_frontalface_alt.xml"; | |
CascadeClassifier face_cascade; | |
int main() | |
{ //Create c++ vector | |
std::vector<Rect> faces; | |
Mat frame_gray; | |
//load image with a face on it | |
Mat frame = imread( "/home/w/Desktop/opencv-master/samples/cpp/lena.jpg", 1); | |
//Convert image to grayscale so its ready to use in detectMultiScale | |
cvtColor(frame, frame_gray, COLOR_BGR2GRAY); | |
//equalize image so its ready to use in detectMultiScale | |
equalizeHist(frame_gray, frame_gray); | |
// create size params for detectMultiScale | |
Size a = Size(30, 30); | |
Size b = Size(); | |
// run face detector , the faces variable is set with 1 or more vector<Rect> by detectMultiScale, usually 0, 1, or 2 | |
//I'm using my c wrapper for c++ detectMultiScale here to test it and it works as good as the the C++ function it wraps | |
cv_CascadeClassifier_detectMultiScale(&face_cascade, &frame_gray, &faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, &a,&b); | |
// Set Region of Interest | |
size_t ic = 0; // ic is index of current element | |
for (ic = 0; ic < faces.size(); ic++) | |
{// using my vector wrapper to convert the vector<Rect> output to a Rect* | |
Rect* c = std_vectorrToCArray(&faces); | |
//here I can access different elements of the array C, where in Lisp I cant. | |
In Lisp when I run (cffi:mem-aref (vector-rect-to-c-array C) ic) I get a memory fault error...cont. at bottom | |
cout << c[ic].x; | |
}} | |
here is my wrapper for std_vectorr_to_carray...I think its defined correctly | |
(defcfun ("std_vectorr_to_carray" %vector-rect-to-c-array) :pointer | |
(s (:pointer vector-rect))) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment