Skip to content

Instantly share code, notes, and snippets.

@wchargin
Last active February 1, 2016 21:38
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save wchargin/917555cdf0e84d23c569 to your computer and use it in GitHub Desktop.
Save wchargin/917555cdf0e84d23c569 to your computer and use it in GitHub Desktop.
linearity of the Lorentz transformation
Display the source blob
Display the rendered blob
Raw
\documentclass{article}
\usepackage{wcsetup}
\usepackage{parskip}
\begin{document}
Consider an inertial reference frame~$s$,
and another inertial reference frame~$s'$
moving at a velocity~$v$ relative to~$s$.
Define the transformation~$L : \R^2 \to \R^2$
by
\begin{equation*}
L((x, ct)) = (\gamma (x - \beta c t), \gamma (c t - \beta x)),
\end{equation*}
where $\beta = v / c$ and~$\gamma = (1 - \beta^2)^{-1/2}$.
This is the \noun{Lorentz transformation}.
\bigskip
\begin{claim*}
The Lorentz~transformation is a linear transformation.
\end{claim*}
\begin{proof}
Let~$(x_1, c t_1)$ and~$(x_2, c t_2)$ be events
in the reference frame~$s$.
Then
\begin{align*}
&\mathrel{\phantom=} L((x_1, c t_1) + (x_2, c t_2)) \\
&= L((x_1 + x_2, ct_1 + ct_2)) \\
&= L((x_1 + x_2, c(t_1 + ct_2))) \\
&=
(\gamma ((x_1 + x_2) - \beta c (t_1 + t_2)),
\gamma (c (t_1 + t_2) - \beta (x_1 + x_2))) \\
&=
((\gamma (x_1 - \beta c t_1)) + (\gamma (x_2 - \beta c t_2)),
(\gamma (c t_1 - \beta x_1)) + (\gamma (c t_2 - \beta x_2))) \\
&=
(\gamma (x_1 - \beta c t_1), \gamma (c t_1 - \beta x_1)) +
(\gamma (x_2 - \beta c t_2), \gamma (c t_2 - \beta x_2)) \\
&= L((x_1, c t_1)) + L((x_2, c t_2)),
\end{align*}
so $L$~is additive.
Now let~$(x, c t)$ be an event in the reference frame~$s$,
and let~$\lambda \in \R$ be a scalar.
Then
\begin{align*}
&\mathrel{\phantom=} L(\lambda (x, c t)) \\
&= L((\lambda x, \lambda c t)) \\
&= L((\lambda x, c (\lambda t))) \\
&=
(\gamma (\lambda x - \beta c (\lambda t)),
\gamma (c (\lambda t) - \beta (\lambda x))) \\
&= (\lambda \gamma (x - \beta c t),
\lambda \gamma (c t - \beta x)) \\
&= \lambda (\gamma (x - \beta c t), \gamma (c t - \beta x)) \\
&= \lambda \, L((x, c t)),
\end{align*}
so $L$~is $1$-homogeneous.
Therefore, $L$~is a linear operator.
\end{proof}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment