Last active
March 1, 2023 02:21
-
-
Save WesleyCh3n/9653610bc384d15e0d9fc86b453751c4 to your computer and use it in GitHub Desktop.
Tensorflow Lite using cv::Mat as input (Tiny Yolo v4) - C++
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <chrono> | |
#include <iomanip> | |
#include <vector> | |
#include "tensorflow/lite/c/common.h" | |
#include "tensorflow/lite/interpreter.h" | |
#include "tensorflow/lite/kernels/register.h" | |
#include "tensorflow/lite/model.h" | |
#include "opencv2/opencv.hpp" | |
using namespace std; | |
typedef cv::Point3_<float> Pixel; | |
void normalize(Pixel &pixel){ | |
pixel.x = (pixel.x / 255.0); | |
pixel.y = (pixel.y / 255.0); | |
pixel.z = (pixel.z / 255.0); | |
} | |
auto matPreprocess(cv::Mat src, uint width, uint height) -> cv::Mat{ | |
// convert to float; BGR -> RGB | |
cv::Mat dst; | |
src.convertTo(dst, CV_32FC3); | |
cv::cvtColor(dst, dst, cv::COLOR_BGR2RGB); | |
// normalize to -1 & 1 | |
Pixel* pixel = dst.ptr<Pixel>(0,0); | |
const Pixel* endPixel = pixel + dst.cols * dst.rows; | |
for (; pixel != endPixel; pixel++) | |
normalize(*pixel); | |
// resize image as model input | |
cv::resize(dst, dst, cv::Size(width, height)); | |
return dst; | |
} | |
template<typename T> | |
auto cvtTensor(TfLiteTensor* tensor) -> vector<T>; | |
auto cvtTensor(TfLiteTensor* tensor) -> vector<float>{ | |
int nelem = 1; | |
for(int i=0; i<tensor->dims->size; ++i) | |
nelem *= tensor->dims->data[i]; | |
vector<float> data(tensor->data.f, tensor->data.f+nelem); | |
return data; | |
} | |
int main(){ | |
// create model | |
std::unique_ptr<tflite::FlatBufferModel> model = | |
tflite::FlatBufferModel::BuildFromFile("./yolov4-tiny-416-fp16.tflite"); | |
tflite::ops::builtin::BuiltinOpResolver resolver; | |
std::unique_ptr<tflite::Interpreter> interpreter; | |
tflite::InterpreterBuilder(*model.get(), resolver)(&interpreter); | |
interpreter->AllocateTensors(); | |
// get input & output layer | |
TfLiteTensor* input_tensor = interpreter->tensor(interpreter->inputs()[0]); | |
TfLiteTensor* output_box = interpreter->tensor(interpreter->outputs()[0]); | |
TfLiteTensor* output_score = interpreter->tensor(interpreter->outputs()[1]); | |
const uint HEIGHT = input_tensor->dims->data[1]; | |
const uint WIDTH = input_tensor->dims->data[2]; | |
const uint CHANNEL = input_tensor->dims->data[3]; | |
// read image file | |
cv::Mat img = cv::imread("NODE29.jpg"); | |
cv::Mat inputImg = matPreprocess(img, WIDTH, HEIGHT); | |
// flatten rgb image to input layer. | |
float* inputImg_ptr = inputImg.ptr<float>(0); | |
memcpy(input_tensor->data.f, inputImg.ptr<float>(0), | |
WIDTH * HEIGHT * CHANNEL * sizeof(float)); | |
// compute model instance | |
std::chrono::time_point<std::chrono::system_clock> start, end; | |
std::chrono::duration<double> elapsed_seconds; | |
start = std::chrono::system_clock::now(); | |
interpreter->Invoke(); | |
end = std::chrono::system_clock::now(); | |
elapsed_seconds = end - start; | |
printf("s: %.10f\n" ,elapsed_seconds.count()); | |
vector<float> box_vec = cvtTensor(output_box); | |
vector<float> score_vec = cvtTensor(output_score); | |
vector<size_t> result_id; | |
auto it = std::find_if(std::begin(score_vec), std::end(score_vec), | |
[](float i){return i > 0.6;}); | |
while (it != std::end(score_vec)) { | |
result_id.emplace_back(std::distance(std::begin(score_vec), it)); | |
it = std::find_if(std::next(it), std::end(score_vec), | |
[](float i){return i > 0.6;}); | |
} | |
vector<cv::Rect> rects; | |
vector<float> scores; | |
for(size_t tmp:result_id){ | |
const int cx = box_vec[4*tmp]; | |
const int cy = box_vec[4*tmp+1]; | |
const int w = box_vec[4*tmp+2]; | |
const int h = box_vec[4*tmp+3]; | |
const int xmin = ((cx-(w/2.f))/WIDTH) * img.cols; | |
const int ymin = ((cy-(h/2.f))/HEIGHT) * img.rows; | |
const int xmax = ((cx+(w/2.f))/WIDTH) * img.cols; | |
const int ymax = ((cy+(h/2.f))/HEIGHT) * img.rows; | |
rects.emplace_back(cv::Rect(xmin, ymin, xmax-xmin, ymax-ymin)); | |
scores.emplace_back(score_vec[tmp]); | |
} | |
vector<int> ids; | |
cv::dnn::NMSBoxes(rects, scores, 0.6, 0.4, ids); | |
for(int tmp: ids) | |
cv::rectangle(img, rects[tmp], cv::Scalar(0, 255, 0), 3); | |
cv::imwrite("./result.jpg", img); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
against which version of tensorflow was this created?
thx for the gist btw