spark_streaming
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyspark import SparkContext | |
from pyspark.streaming import StreamingContext | |
def updateCount(newCounts, state): | |
if state == None: | |
return sum(newCounts) | |
else: | |
return state + sum(newCounts) | |
# DataFrame operations inside your streaming program | |
def main(): | |
sc = SparkContext(appName="Pyspark_Streaming_Demo") | |
sc.setLogLevel("WARN") | |
ssc = StreamingContext(sc, 2) #Streaming will execute in every 2 seconds | |
lines = ssc.socketTextStream("localhost", 9009) | |
# create a new RDD with one word per line | |
counts = lines.flatMap(lambda line: line.split(" ")) \ | |
.map(lambda x: (x, 1)) \ | |
.reduceByKey(lambda a, b: a + b) | |
ssc.checkpoint("result/checkpoints") | |
totalWords = counts.updateStateByKey(lambda newCounts, state: updateCount(newCounts, state)) | |
totalWords = totalWords.transform( lambda rdd: rdd.sortBy(lambda x: x[1], ascending=False)) | |
totalWords.pprint(30) | |
ssc.start() | |
ssc.awaitTermination() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment