Kelly return ratio plot and Monte Carlo simulation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Mon Sep 21 14:56:39 2020 | |
Kelly Criterion functions | |
@author: johnx | |
""" | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def plotReturnRatio(p,w): | |
""" | |
Parameters | |
---------- | |
p : TYPE Real, 0 <= p <= 1 | |
Probability of winning | |
w : TYPE Real, 0 < w | |
Winnings per bet | |
Returns | |
------- | |
Plot of return ratio for bet fraction b, 0 <= b <= 1 | |
""" | |
# Return ratio function | |
R = lambda b,p,w: (1-b+b*w)**p * (1-b)**(1-p) | |
# Bet fractions | |
b = np.linspace(0,1,num = 100) | |
# Return ratio for each bet fraction | |
r = [R(beta,p,w) for beta in b] | |
# Optimal b and r | |
b_max = (p*w - 1)/(w-1) | |
r_max = R(b_max,p,w) | |
# Plot curve | |
plt.plot(b,r) | |
plt.plot(b_max,r_max,color = 'red', marker = 'o') | |
plt.xlabel('Bet fraction, b') | |
plt.ylabel('Return ratio, R') | |
plt.title('Kelly Criterion') | |
def KellyMC(p,w): | |
""" | |
Parameters | |
---------- | |
p : TYPE Real, 0 <= p <= 1 | |
Probability of winning. | |
w : TYPE Real, 0 < w | |
Winnings per bet. | |
Returns | |
------- | |
S : Money on hand after each bet for 3 different betting strategies | |
""" | |
# Number of MC experiments | |
nMC = 100 | |
# Betting fraction error | |
b_err = 0.05 | |
# Series of win/loss experiments | |
nWL = int(np.round(p*nMC)) | |
WL = np.random.permutation(np.concatenate((np.ones(nWL),np.zeros(nMC-nWL)),axis=0)) | |
# Net value on hand after each experiment | |
S = np.zeros((3,nMC)) | |
# Optimal betting fraction | |
b = (p*w-1)/(w-1) | |
# Bet fractions | |
B = np.array([b - b_err, b, b + b_err]) | |
# Play each hand (1st hand assumes initial stash = 1) | |
S[:,0] = 1 - B + w*B*WL[0] | |
for k in range(1,nMC): | |
S[:,k] = S[:,k-1] * (1 - B + w*B*WL[k]) | |
# Plot results | |
games = np.array(range(1,nMC+1)).transpose() | |
plt.plot(games,S[0,:], label = "Bet-") | |
plt.plot(games,S[1,:], label = "Optimal") | |
plt.plot(games,S[2,:], label = "Bet+") | |
plt.xlabel('Game number') | |
plt.ylabel('Net value') | |
plt.legend('loc','upper left') | |
plt.title('Monte Carlo Kelly Experiment') | |
plt.grid() | |
plt.legend(["Bet-","Optimal","Bet+"]) | |
return S |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment