PyTorch seq2seq.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.autograd import Variable | |
np.random.seed(0) | |
torch.manual_seed(0) | |
_RECURRENT_FN_MAPPING = { | |
'rnn': torch.nn.RNN, | |
'gru': torch.nn.GRU, | |
'lstm': torch.nn.LSTM, | |
} | |
def get_recurrent_cell(n_inputs, | |
num_units, | |
num_layers, | |
type_, | |
dropout=0.0, | |
bidirectional=False): | |
cls = _RECURRENT_FN_MAPPING.get(type_) | |
return cls( | |
n_inputs, | |
num_units, | |
num_layers, | |
dropout=dropout, | |
bidirectional=bidirectional) | |
class Recurrent(nn.Module): | |
def __init__(self, | |
num_units, | |
num_layers=1, | |
unit_type='gru', | |
bidirectional=False, | |
dropout=0.0, | |
embedding=None, | |
attn_type='general'): | |
super(Recurrent, self).__init__() | |
num_inputs = embedding.weight.size(1) | |
self._num_inputs = num_inputs | |
self._num_units = num_units | |
self._num_layers = num_layers | |
self._unit_type = unit_type | |
self._bidirectional = bidirectional | |
self._dropout = dropout | |
self._embedding = embedding | |
self._attn_type = attn_type | |
self._cell_fn = get_recurrent_cell(num_inputs, num_units, num_layers, | |
unit_type, dropout, bidirectional) | |
def init_hidden(self, batch_size): | |
direction = 1 if not self._bidirectional else 2 | |
h = Variable( | |
torch.zeros(direction * self._num_layers, batch_size, | |
self._num_units)) | |
if self._unit_type == 'lstm': | |
return (h, h.clone()) | |
else: | |
return h | |
def forward(self, x, h, len_x): | |
# Sort by sequence lengths | |
sorted_indices = np.argsort(-len_x).tolist() | |
unsorted_indices = np.argsort(sorted_indices).tolist() | |
x = x[:, sorted_indices] | |
h = h[:, sorted_indices, :] | |
len_x = len_x[sorted_indices].tolist() | |
embedded = self._embedding(x) | |
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, len_x) | |
if self._unit_type == 'lstm': | |
o, (h, c) = self._cell_fn(packed, h) | |
o, _ = torch.nn.utils.rnn.pad_packed_sequence(o) | |
return (o[:, unsorted_indices, :], (h[:, unsorted_indices, :], | |
c[:, unsorted_indices, :])) | |
else: | |
o, hh = self._cell_fn(packed, h) | |
o, _ = torch.nn.utils.rnn.pad_packed_sequence(o) | |
return (o[:, unsorted_indices, :], hh[:, unsorted_indices, :]) | |
class Encoder(Recurrent): | |
pass | |
class Decoder(Recurrent): | |
pass | |
class Seq2Seq(nn.Module): | |
def __init__(self, encoder, decoder, num_outputs): | |
super(Seq2Seq, self).__init__() | |
self._encoder = encoder | |
self._decoder = decoder | |
self._out = nn.Linear(decoder._num_units, num_outputs) | |
def forward(self, x, y, h, len_x, len_y): | |
# Encode | |
_, h = self._encoder(x, h, len_x) | |
# Decode | |
o, h = self._decoder(y, h, len_y) | |
# Project | |
o = self._out(o) | |
return F.log_softmax(o) | |
def load_data(size, | |
min_len=5, | |
max_len=15, | |
min_word=3, | |
max_word=100, | |
epoch=10, | |
batch_size=64, | |
pad=0, | |
bos=1, | |
eos=2): | |
src = [ | |
np.random.randint(min_word, max_word - 1, | |
np.random.randint(min_len, max_len)).tolist() | |
for _ in range(size) | |
] | |
tgt_in = [[bos] + [xi + 1 for xi in x] for x in src] | |
tgt_out = [[xi + 1 for xi in x] + [eos] for x in src] | |
def _pad(batch): | |
max_len = max(len(x) for x in batch) | |
return np.asarray( | |
[ | |
np.pad( | |
x, (0, max_len - len(x)), | |
mode='constant', | |
constant_values=pad) for x in batch | |
], | |
dtype=np.int64) | |
def _len(batch): | |
return np.asarray([len(x) for x in batch], dtype=np.int64) | |
for e in range(epoch): | |
batch_start = 0 | |
while batch_start < size: | |
batch_end = batch_start + batch_size | |
s, ti, to = (src[batch_start:batch_end], | |
tgt_in[batch_start:batch_end], | |
tgt_out[batch_start:batch_end]) | |
lens, lent = _len(s), _len(ti) | |
s, ti, to = _pad(s).T, _pad(ti).T, _pad(to).T | |
yield (Variable(torch.LongTensor(s)), | |
Variable(torch.LongTensor(ti)), | |
Variable(torch.LongTensor(to)), lens, lent) | |
batch_start += batch_size | |
def print_sample(x, y, yy): | |
x = x.data.numpy().T | |
y = y.data.numpy().T | |
yy = yy.data.numpy().T | |
for u, v, w in zip(x, y, yy): | |
print('--------') | |
print('S: ', u) | |
print('T: ', v) | |
print('P: ', w) | |
n_data = 50 | |
min_len = 5 | |
max_len = 10 | |
vocab_size = 101 | |
n_samples = 5 | |
epoch = 100000 | |
batch_size = 32 | |
lr = 1e-2 | |
clip = 3 | |
emb_size = 50 | |
hidden_size = 50 | |
num_layers = 1 | |
max_length = 15 | |
src_embed = torch.nn.Embedding(vocab_size, emb_size) | |
tgt_embed = torch.nn.Embedding(vocab_size, emb_size) | |
eps = 1e-3 | |
src_embed.weight.data.uniform_(-eps, eps) | |
tgt_embed.weight.data.uniform_(-eps, eps) | |
enc = Encoder(hidden_size, num_layers, embedding=src_embed) | |
dec = Decoder(hidden_size, num_layers, embedding=tgt_embed) | |
net = Seq2Seq(enc, dec, vocab_size) | |
optimizer = torch.optim.Adam(net.parameters(), lr=lr) | |
criterion = torch.nn.NLLLoss() | |
loader = load_data( | |
n_data, | |
min_len=min_len, | |
max_len=max_len, | |
max_word=vocab_size, | |
epoch=epoch, | |
batch_size=batch_size) | |
for i, (x, yin, yout, lenx, leny) in enumerate(loader): | |
net.train() | |
optimizer.zero_grad() | |
logits = net(x, yin, enc.init_hidden(x.size()[1]), lenx, leny) | |
loss = criterion(logits.view(-1, vocab_size), yout.contiguous().view(-1)) | |
loss.backward() | |
torch.nn.utils.clip_grad_norm(net.parameters(), clip) | |
optimizer.step() | |
if i % 10 == 0: | |
print('step: {}, loss: {:.6f}'.format(i, loss.data[0])) | |
if i % 200 == 0 and i > 0: | |
net.eval() | |
x, yin, yout, lenx, leny = (x[:, :n_samples], yin[:, :n_samples], | |
yout[:, :n_samples], lenx[:n_samples], | |
leny[:n_samples]) | |
outputs = net(x, yin, enc.init_hidden(x.size()[1]), lenx, leny) | |
_, preds = torch.max(outputs, 2) | |
print_sample(x, yout, preds) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment