Skip to content

Instantly share code, notes, and snippets.

@YoEight
Created June 19, 2016 15:07
Show Gist options
  • Save YoEight/760cd23f450a66b0d2d21e3c2171704b to your computer and use it in GitHub Desktop.
Save YoEight/760cd23f450a66b0d2d21e3c2171704b to your computer and use it in GitHub Desktop.
Stream based Graph processing example in Haskell
module Graph where
import qualified Data.Map as M
import qualified Data.Set as S
data Vertex v =
Vertex
{ vertexId :: Int
, vertexValue :: v
}
instance Eq (Vertex v) where
Vertex l _ == Vertex r _ = l == r
instance Ord (Vertex v) where
compare l r = compare (vertexId l) (vertexId r)
data Edge =
Edge
{ edgeSrc :: Int
, edgeDest :: Int
}
instance Show Edge where
show (Edge x y) = show (x, y)
instance Eq Edge where
Edge ls ld == Edge rs rd = (ls, ld) == (rs, rd)
instance Ord Edge where
compare (Edge ls ld) (Edge rs rd) = compare (ls, ld) (rs, rd)
data Graph v =
Graph
{ graphVertices :: [Vertex v]
, graphEdges :: [Edge]
} deriving Show
instance Show v => Show (Vertex v) where
show (Vertex _ n) = show n
testGraph :: Graph String
testGraph = Graph vs es
where
vs = [ Vertex 1 "a"
, Vertex 2 "b"
, Vertex 3 "c"
]
es = [ Edge 1 2
, Edge 1 3
, Edge 2 3
]
adjacentList :: Graph v -> Graph [Int]
adjacentList (Graph _ es) = Graph (es >>= go) es
where
go (Edge src dest) =
[ Vertex src [dest]
, Vertex dest [src]
]
reduceByKey :: (v -> v -> v) -> Graph v -> Graph v
reduceByKey k (Graph vs es) = Graph vs' es
where
vs' = fmap (uncurry Vertex) $ M.assocs $ foldl go M.empty vs
go m (Vertex vid v) =
let _F (Just v') = Just $ k v v'
_F _ = Just v in
M.alter _F vid m
appending :: [a] -> [b] -> [Either a b]
appending xs vs = fmap Left xs ++ fmap Right vs
join :: Graph v -> Graph w -> Graph (v, w)
join (Graph lvs les) (Graph rvs res) = Graph vs' es'
where
vs' = (M.assocs $ foldl go M.empty (appending lvs rvs)) >>= reducing
es' = S.toList $ foldl pruning S.empty (les ++ res)
reducing (vid, Left _) = []
reducing (vid, Right tup) = [ Vertex vid tup ]
pruning s e = S.insert e s
go m (Left (Vertex vid v)) = M.insert vid (Left v) m
go m (Right (Vertex wid w)) = M.adjust (\(Left v) -> Right (v, w)) wid m
vertex :: Int -> Vertex String
vertex i = Vertex i (show i)
testConnected :: Graph String
testConnected = Graph vs es
where
vs = [ vertex 1
, vertex 2
, vertex 3
, vertex 4
, vertex 5
, vertex 6
]
es = [ Edge 1 3
, Edge 1 5
, Edge 3 5
, Edge 2 4
, Edge 2 6
, Edge 4 6
]
smallestNode :: Int -> Int -> M.Map Int Int -> M.Map Int Int
smallestNode n v m = M.alter go n m
where
go (Just o)
| v < o = Just v
| otherwise = Just o
go _
| v < n = Just v
| otherwise = Just n
connectedComponents :: Graph v -> Graph Int
connectedComponents (Graph vs es) = Graph vs' es
where
vs' = fmap (uncurry Vertex) $ M.assocs $ foldl go M.empty es
go m (Edge x y) =
smallestNode x y (smallestNode y x m)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment