Last active
December 11, 2015 06:59
-
-
Save Zepheus/4563417 to your computer and use it in GitHub Desktop.
A balanced binary search tree implementation using the red-black algorithm. This uses Haskell's pattern matching to rotate and balance the trees, which simplifies it a lot compared to the imperative style implementation.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Description: A red-black tree implementation in Haskell | |
-- Author: Cedric Van Goethem | |
-- Version 1.1, 2013 | |
type Tree a = Node a | |
data Color = Red | Black deriving (Eq, Show) | |
data Node a = Node a Color (Node a) (Node a) | Nil deriving (Eq, Show) | |
tree :: (Ord a) => a -> Tree a | |
tree x = Node x Black Nil Nil | |
addValue :: Ord a => a -> Tree a -> Tree a | |
addValue x = addNode (Node x Red Nil Nil) | |
addNode :: Ord a => Node a -> Tree a -> Tree a | |
addNode n t = go $ addNode' n t | |
where go (Node v _ l r) = Node v Black l r | |
addNode' :: Ord a => Node a -> Tree a -> Tree a | |
addNode' Nil t = t | |
addNode' n@(Node v1 c1 l1 r1) t@(Node v2 c2 l2 r2) | |
| v1 < v2 = balance $ setLeft t (addChild n l2) | |
| v1 > v2 = balance $ setRight t (addChild n r2) | |
| otherwise = t | |
addChild :: Ord a => Node a -> Node a -> Node a | |
addChild n Nil = n | |
addChild n t = addNode' n t | |
{- Rotations -} | |
balance :: Node a -> Node a | |
balance (Node z Black (Node y Red (Node x Red a b) c) d) = Node y Red (Node x Black a b) (Node z Black c d) | |
balance (Node z Black (Node x Red a (Node y Red b c)) d) = Node y Red (Node x Black a b) (Node z Black c d) | |
balance (Node x Black a (Node z Red (Node y Red b c) d)) = Node y Red (Node x Black a b) (Node z Black c d) | |
balance (Node x Black a (Node y Red b (Node z Red c d))) = Node y Red (Node x Black a b) (Node z Black c d) | |
balance x = x | |
{- Getters and setters -} | |
setColor :: Node a -> Color -> Node a | |
setColor Nil _ = Nil | |
setColor (Node v _ x y) c = Node v c x y | |
getLeft :: Node a -> Node a | |
getLeft (Node _ _ x _) = x | |
getRight :: Node a -> Node a | |
getRight (Node _ _ _ y) = y | |
setLeft :: Node a -> Node a -> Node a | |
setLeft (Node v c _ y) o = Node v c o y | |
setRight :: Node a -> Node a -> Node a | |
setRight (Node v c x _) o = Node v c x o |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment