Created
April 12, 2022 07:44
-
-
Save a-voel/3dfb7acd5e65606bd51a1c148650ae36 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
plt.style.use('ggplot') | |
Sbar = 0.15 | |
Ibar = 0.001 | |
beta = 2 | |
gamma = 1/2 | |
exponent= beta*Sbar-gamma | |
print("exponent:", exponent) | |
# numerics params | |
N = 1000 | |
T = 15 | |
dt = T/N | |
def rk4(f, s, dt): | |
k1 = f(s) | |
k2 = f(s+dt*k1/2) | |
k3 = f(s+dt*k2/2) | |
k4 = f(s+dt*k3) | |
return s+dt*1/6*(k1+2*k2+2*k3+k4) | |
def f(x): | |
I, S = x | |
return np.array([ | |
beta*S*I-gamma*I, | |
-beta*S*I | |
]) | |
# numerics | |
ts = [] | |
nss = [] | |
nis = [] | |
x = np.array([Ibar, Sbar]) | |
for i in range(N): | |
t = dt*i | |
x = rk4(f, x, dt) | |
nis.append(x[0]) | |
nss.append(x[1]) | |
ts.append(t) | |
ts = np.array(ts) | |
nss = np.array(nss) | |
nis = np.array(nis) | |
#perturbation theory (eps=1) | |
pss = Sbar-beta*Sbar*Ibar/(beta*Sbar-gamma)*(np.exp((beta*Sbar-gamma)*ts)-1) | |
pis = Ibar*np.exp((beta*Sbar-gamma)*ts) | |
#plotting | |
fig, (ax1, ax2) = plt.subplots(2, 1) | |
ax1.plot(ts, nis, label="Numerics") | |
ax1.plot(ts, pis, "--", label="Perturbation theory") | |
ax1.set_title("Infections $I(t)$") | |
ax1.autoscale(enable=True, axis='x', tight=True) | |
ax2.plot(ts, nss) | |
ax2.plot(ts, pss, "--") | |
ax2.set_title("Susceptible $S(t)$") | |
ax2.autoscale(enable=True, axis='x', tight=True) | |
plt.figlegend() | |
plt.tight_layout() | |
plt.savefig("peturbation.svg") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment