Skip to content

Instantly share code, notes, and snippets.

Created August 30, 2017 14:36
Show Gist options
  • Save anonymous/a94e2b22b865b24496da73f335cb4f23 to your computer and use it in GitHub Desktop.
Save anonymous/a94e2b22b865b24496da73f335cb4f23 to your computer and use it in GitHub Desktop.
Сварочный инвентор схема

Сварочный инвентор схема


Сварочный инвентор схема



Схема сварочного инвертора. Принципиальная электрическая схема сварочного инвертора
Как сделать сварочный аппарат инвертор своими руками?
Сварочный инвертор своими руками


























Уж не знаю почему этой схеме приклеили данное имя, но в интернете довольно часто упоминается сварочный аппарат Бармалея. Вариантов схемы инвертора Бармалея нашлось несколько, но топология у них практически одинаковая - прямоходовой однотактный преобразователь довольно часто именуемый "косой мост", почему то , управляемый контроллером UC Поскольку этот контроллер в данной схеме является основным, то с принципа его работы и начнем. Микросхема UC выпускается несколькими производителями и состоит в серии микросхем UC, UC, UC, UC, UC, UC, UC, UC, UC, UC, UC, и UC В микросхему интегрирован дополнительный стабилитрон на Микросхема может работать до частот кГц, выходной ток оконечного каскада драйвера способен развить ток до 1 А, что в сумме позволяет проектировать довольно компактные блоки питания. Блок схема микросхемы приведена ниже: Этот триггер установлен только в серии UCx и UCx В микросхемах, выполненных в корпусах с восьмью выводами некоторые выводы объеденены внутри микросхемы, например VC и Vcc , PWRGND и GROUND. Типовая схема импульсного блока питания на UC приведена ниже: Данный блок питания имеет косвенную стабилизацию вторичного напряжения, поскольку контролирует свое собственное питание, формируемое обмоткой NC. Это напряжение выпрямляется диодом D3 и служит для питания самой микросхемы после ее запуска, а пройдя делитель на R3 попадает на вход усилителя ошибки, который и управляет длительностью импульсов управления силовым транзистором. При увеличении нагрузки амплитуда всех выходных напряждений трансформатора уменьшается, это приводит и к уменьшщению напряжения на выводе 2 микросхемы. Логика микросхемы увеличивает длительность управляющего импульса, в трансформаторе накапливается больше энергии и в результате амплитуда выходных напряжений возвращается к исходному значению. Если же нагрузка уменьшается, то напряжение на выводе 2 увеличивается, уменьшается длительность управляющих импульсов и снова амплитуда выходных напряжений возвращается к установленному значению. В микросхему интегрирован вход для организации защиты от перегрузки. Как только на токоограничивающем резисторе R10 падение напряжения достигнет 1 В микросхема выключает управляющий импульс на затворе силового транзистора, тем самым ограничивая протекающий через него ток и исключая перегрузку блока питания. Зная величину этого управляющего напряжения можно регулировать ток сработки защиты изменяя величину токоограничивающего резистора. В данном случае максимальный ток через транзистор ограничивается 1,8 амперами. Зависимость величины протекающего тока от номинала резистора можно расчитать по закону Ома, но каждый раз брать в руки калькулятор слишком лениво, поэтому расчитав один раз попросту занесем резутальтаты расчетов в таблицу. Напоминаю - нужно падение напряжения величиной один вольт, следовательно в таблице будут указаны лишь ток срабатывания защиты, номиналы резисторов и их мощность. Схема импульсного блока питания с непосредственным контролем выходного напряжения предлагается в даташнике на микросхему от Texas Instruments: Данная схема контролирует выходное напряжение при помощи оптрона, яркость свечения светодиода оптрона определяет регулируемый стабилитрон TL, что увеличивает коф. В схему введены дополнительные элементы на транзисторах. Певрый имитирует систему софт-страрта, второй - увеличивает термостабильность за счет использования тока базы введенного транзистора. Определить ток срабатывания защиты данной схемы труда не составит - Rcs равен 0,75 Ома, следовательно ток будет ограничиваться 1,3 А. И предыдущая и эта схемы блоков питания рекомендуются в даташниках на UC от "Texas Instruments", в даташниках остальных производителей рекомендутеся лишь первая схема. Зависиммость частоты от номиналов частотозадающих резистора и конденсатора показаны на рисунке ниже: В подавляющем большинстве простых сварочных аппаратов как раз и используется микросхема UC в качестве управляющего элемента и без знания принципа ее работы возможно возникновение фатальных ошибок, способствующих выходу из строя не только копеешной микросхемы, но и довольно дорогих силовых транзисторов. К тому же я собираюсь проектировать сварочный аппарат, а не тупо клонировать чужую схему, искать ферриты, которые возможно даже придется покупать, для того, чтобы повторить чей то девайс. Не, меня такое не устраивает, поэтому берем имеющеюся схему и перетачиваем ее под то, что нужно нам, под те элементы и ферриты, которые есть в наличии. Именно поэтому тут будет довольно много теории и несколько экспериментальных замеров и именно поэтому в таблице номиналов резисторов защиты использованы резисторы, включенные параллельно голубые поля ячеек и расчет сделан для токов более 10 ампер. Итак, сварочный инвертор, который большинство сайтов называют сварочником Бармалея имеет следующую принципиальную схему: Кстати сказать удалось найти даже сборник ответов по этому сварочному аппарату с какого то форума. Думаю это будет полезно тем, кто собрался чисто клонировать схему. Регулировка тока дуги производится изменением опорного напряжения на входе усилителя ошибки, защита от перегрузки организована с использованием трансформатора тока ТТ1. Сам контроллер работает на транзистор IRF В принципе там может использоваться любой транзистор с не очень большой энергией затвора Q g IRF, IRF и т. Транзистор нагружен на управляющий трансформатор Т2, который непосредственно подает управлдяющие импульсы на затворы силовых IGBT транзисторов. Чтобы управляющий трансформатор не намагничивался используется на нем выполнена размагничивающая обмотка IV. Вторичные обмотки управляющего трансформатора нагружены на затворы силовых транзисторов IRG4PC50U через выпрямитель на диодах 1N Причем в схеме управления имеются форсирующие закрытие силовой части транзисторы IRFD, которые при смене полярности напряжения на обмотках трансформатора Т2 открываются и всю энергию затворов силовых транзисторов гасят на себя. Подобные ускорители закрытия облегчают токовый режим драйвера и значительно сокращают время закрытия силовых транзисторов, что в свою очередь уменьшает их нагрев - время нахождения в линейном режиме значительно сокращается. Так же для облегчения работы силовых транзисторови подавления импульсных помех, возникающих при работе на индуктивную нагрузку служат цепочки из резисторов на 40 Ом, конденсаторов на пкФ и диодов HFA15TB Для окончательного размагничивания сердечника и подавления выбросов самоиндукции используется еще одна пара HFA15TB60, установленные правее по схеме. На вторичной обмотке трансформатора установлен однополупериодный выпрямитель на диоде EBU Диод шунтирован помехоподовляющей цепочкой на резисторе 10 Ом и конденсаторе на пкФ. Второй диод служит для размагничивания дросселя ДР1, кторый во время прямого хода преобразователя накапливает магнитную энергию, а во время паузы между импульсами отдает эту энергию в нагрузку за счет самоиндукции. Для улучшения этого процесса как раз и устанавливается дополнительный диод. В результате на выходе инвертора получается не пульсирующее напряжение, а постоянное с не большой пульсацией. Следующей подмодификацией данной сварочного аппарта является схема инвертора приведенного ниже: Сильно не вникал, что там намудрено по выходному напряжению, лично мне больше понравилось использование в качестве закрывающих силовую часть биполярных транзисторов. Другими словами в данном узле можно использоввать и полевики и биполярники. В принципе это как бы подразумевалось по умолчанию, главное - как можно быстрее закрыть силовые транзисторы, а каким образом это сделать уже второстепенный вопрос. В принципе используя более мощный трансформатор управления от закрывающих транзисторов можно и отказаться - достаточно на затворы силовых транзисторов подать не большое отрицательное напряжение. Однако меня всегда смущало наличие управляющего трансформатора в сварочном аппарате - ну не люблю я моточные детали и по возможности стараюсь обходится без них. Перебор схем сварочников продолжился и была откопана следующая схема сварочного инвертора: В этой схеме реализовано еще пара вкусностей: Такой вариант сварочного аппарата гарантирует более устойчивую дугу даже на не больших токах, поскольку при увеличении дуги ток начинает уменьшаться, а этот аппарат будет увеличивать выходное напряжение, стараясь удержать установленное значение выходного тока. Единственный недостаток - нужен галетный переключатель на как можно большее количество положений. Так же попалась на глаза еще одна схема сварочного аппарата для самостоятельного изготовления. Заявлен выходной ток в ампер, но это не главное. Главное - использование в качестве драйвера довольно популярной микросхемы IR Есть еще одно смущение, причем довольно серьезное. В принципе во время паузы должно происходить доразмагничивание сердечника, то есть полярность напряжения на обмотки силового трансформатора должна поменяться и чтобы не слетели транзисторы как раз и установлены диоды D7 и D8. Вроде бы этого кратковременно на верхнем выводе силового трансформатора должно появится напряжение на 0, Ведь если он не зарядится верхнее плечо силовой части не откроется - не откуда будет взяться напряжению вольтодобавки драйвера IR В общем над этой темой имеет смысл поразмышлять более досконально Есть еще один вариант сварочного аппарата, выполненного по той же топологии, но в нем использовались отечесвенные детали и в больших количествах. Принципиальная схема приведена ниже: Причем автор в оригинальной статье утверждает, что первый вариант был собран на IRF по 6 штук в плечо. Это действительно "голь на выдумку хитра". Тут же сразу следует сделать запоминаку - в сварочном инверторе могут использоваться как IGBT транзисторы, так и транзисторы MOSFET. Для того, чтобы не путаться с определениями и цоколевкой вышаем рисуночек этих самых транзисторов: Кроме этого имеет смысл отметить, что в данной схеме используется и ограничение выходного напряжения и режим стабилизации тока, который регулируется переменным резистором на 47 Ом - низкоомность данного резистора единственный недостаток данной реализации, но при желании такой найти можнопричем увеличение данного резистора до Ом не критично, просто нужно будет увеличить и ограничивающие резисторы. Еще один вариант сварочного аппарата попался на глаза штудируя иностранные сайты. В этом аппарате так же имеется регулировка тока, но выполнена она не совсем обычно. На вывод контроля тока изначально подается напряжение смещения и чем оно больше, тем требуется меньшее напряжение с трансформатора тока, следовательно, тем меньший ток будет протекать через силовую часть. Если же напряжение смещения минимально, то для достижения тока срабатывания ограничителя потребуется большее напряжение с ТТ, которое возможно лишь при протекании большого тока через первичную обмотку трансформатора. Принципиальная схема данного инвертора приведена ниже: Мысль конечно же интересная, но для данного устройства потребуются электролиты с маленьким ESR, а на вольт такие конденсаторы найти довольно проблематично. Поэтому я откажусь от установки электролитов, а поставлю пару-тройку конденсаторов MKP X2 на 5 мкФ, используемые в индукционных плитах. СОБИРАЕМ СВОЙ СВАРОЧНЫЙ АППАРАТ ПОКУПАЕМ ДЕТАЛИ. Прежде всего сразу скажу - сборка сварочного аппарата самостоятельно это не попытка сделать аппарат дешевле магазинного, поскольку в конечном итоге может получится так, что собранный аппарат получится дороже, чем заводской. Однако есть в этой затее и свои плюсы - данный аппарат можно приобрести в безпроцентный кредит, поскольку совсем не обязательно покупать сразу весь комплект деталей, а делать покупки по мере появления свободных денег в бюджете. Опять же изучение силовой электроники и сборка подобного инвертора самостоятельно дает безценный опыт, который позволит собирать подобные устройства, затачивая непосредственно под свои нужды. Например собрать пуско-зарядное устройство с выходным током А, собрать источник питания для плазмореза - устройства хоть и специфического, но для работающих с металлом штука ОЧЕНЬ полезная. Если же кому то покажется, что я ударился в рекламу Али, то скажу сразу - да, я рекламирую Али, потому что меня устраивает и цена и качество. С тем же успехом я могу рекламировать нарезанные батоны Аютинского хлебозавода, но черный хлеб я покупаю Красно-Сулинский. Сгущенное молоко предпочитаю и Вам рекомендую, "Коровка из Кореновки", а вот творог гораздо лучше Тацинского молочного завода. Так что я готов рекламировать все, что попробовал сам и мне понравилось. Для сборки сварочного аппарата потребуется дополнительное оборудование, которое необходимо для сборки и наладки сварочного аппарата. Данное оборудование тоже стоит каких то денег и если Вы действительно собираетесь заниматься силовой электроникой, то оно Вам пригодится и позже, если же сборка данного устройства является попыткой потратить меньше денег, то смело отказывайтесь от этой идеи и идите в магазин за готовым сварочным инвертором. Подавляющее большинство комплектующих я покупаю на Али. Ждать приходится от трех недель до двух с половиной месяцев. Однако стоимость комплектующих значительно дешевле, чем в магазине радиодеталей к кторому мне еще нужно ехать 90 км. Поэтому сразу сделаю не большую инструкцию как лучше покупать компоненты на Али. Ссылки на используемые детали я буду давать по мере их упоминания, причем давать буду на результаты поиска, потому что есть вероятность того, что через пару-тройку месяцев у какого то продавца этого товара не будет. Так же для сравнения буду давать цены на упоминаемые компоненты. Цены будут в рублях на момент написания данной статьи, то есть середина марта года. Перейдя по ссылке на результаты поиска прежде всего следует отметить, что сортировка произведена по количеству покупок того или иного товара. Другими словами Вы уже имеете возможность посмотреть сколько именно этого товара какой то продавец продал и какие отзывы на эти товары получил. Погоня за низкой ценой далеко не всегда свляется правильной - Китайские предприниматели стараются реализовать ВСЮ продукцию, поэтому иногда случаются и перемаркированные элементы, а так же элементы после демонтажа. Поэтому смотрите на количество отзывов о товаре. Если же есть эти же компоненты по более привлекательной цене, но количество продаж у этого продавца не большое, то имеет смысл обратить внимание общее количетсво положительных отзывов о продавце. Имеет смысл обратить внимание на фотографии - наличие самой фотографии торвара говорит об ответственности продавца. А на фото как раз видно какая маркировка, это частенько помогает - маркировку лазером и краской видно и на фото. Силовые транзисторы я покупаю с алзерной маркировкой, а вот IR брал и с маркировкой краской - микросхемы рабочие. Если выбираются силовые транзисторы, то довольно часто я не брезгую транзисторами с демонтажа - у них обычно разница по цене довольно приличная, а для прибора, собираемого самостоятельно можно использовать и детали с более короткими ногами. Отличить детали не сложно даже по фото: Так же несколько раз я наскакивал на разовые акции - продавцы без рейтинга вообще выставляют на продажу какие то компоненты по ОЧЕНЬ смешным ценам. Разумеется, что покупка осуществляется на свой страх и риск. Однако я делал пару покупок у подобных продавцов и обе удачные. Последний раз я приобрел конденсаторы MKP X2 на 5 мкФ за рублей 10 штук. Заказ пришел довольно быстро - чуть больше месяца, 9 штук на 5 мкФ, а один, точно такого же размера на 0,33 мкФ В. Спор открывать я не стал - у меня для индукционных игрушек все емкости на 0,27 мкФ и как бы на 0,33 мкФ мне даже пригодится. Да и цена уж больно смешная. Емкости все проверил - рабочие, хотел заказать еще, но уже была вывеска - ТОВАР БОЛЕЕ НЕ ДОСТУПЕН. До этого брал несколько раз демонтажные IRFPS37N50, IRGP20BUD, STW45NM Все транзисторы исправны, единственно что несколько огорчило, так это на STW45NM50 ноги были переформованы - на трех транзисторах из ти выводы буквально отпали при попытке их согнуть под свою плату. Но цена была уж слишком смешной, чтобы на что то обижаться - 20 штук за рублей. Транзисторы эти теперь используются как подстановочные - корпус спилен до вывода, припяны провода и залито эпоксидным клеем. Один до сих пор жив, прошло уже два года. Поиски были продолжительными и довольно активными. Дело в том, что сильно смущает разница в цене. Но для начала о маркировке разъемов для сварочного аппарата. На Али используется Европейская маркировка ну так у них написано , поэтому будем танцевать от их обозначений. Правда шикароного танца не получится - данные разъемы раскиданы по различным категориям, начиная от USB разъемов, ПАЯЛЬНЫХ ЛАМП и заканчивая ПРОЧЕЕ. Да и по названию разъемов тоже не все так гладко, как хотелось бы Ну для начала небольшая табличка: Дело в том, что во время проворачивания разъема штекерная часть упирается торцом в торец ответной части и поскольку диаметры торцов у более мощных разъемов больше получается большая площадь контакта, следовательно разъем способен пропускать больший ток. Буквально пару дней назад я заказал пару DKJ Правда пришлось сначала объясняться с продавцом - в описании написано, что под провод мм 2 , а на фоторгафии мм 2. Продавец заверил, что это разъемы под провод мм 2. Что пришлет увидим - есть время подождать. Как только первый вариант сварочного аппарата пройдет испытания начну собирать второй вариант с гораздо большим набором функций. Аппарат мне очень нравится, а его возможности просто вызвали бурю восторга. Но в процессе освоения сварочного аппарата выяснилось несколько недостатков, которые хотелось бы устранить. Я не буду вдаваться в подробности что именно мне не понравилось, поскольку аппарат действительно весьма не дурен, но хочется больше. Поэтому собственно и взялся за разработку своего сварочного аппарата. Аппарат типа "Бармалей" будет тренировочным, а следующий уже должен будет превзойти имеющуюся "Аврору". Итак, просмотрены все варианты схем, заслуживающие внимания, приступаем к сборке собственного сварочного аппарата. Для начала нужно определится с силовым трансформатором. Покупать ш-образные ферриты я не стану - имеются в наличии ферриты от строчных трансформаторов и есть довольно много одинаковых. Но форма данного сердечника довольно своеобразна, да и магнитная проницаемость на них не указана Придется сделать несколько тестовых замеров, а именно сделать каркасик под один сердечник, намотать на нем с полсотни витков и одевая этот каркасик на сердечники выбрать те, у которых индуктичность будет максимально одинаковая. Таким образом будут отобраны сердечники, которые будут использованы для сборки общего сердечника, состоящего из нескольких магнитопроводов. Далее нужно будет выяснить, сколько витков необходимо намотать на первичной обмотке, чтобы сердечник и в насыщение не вогнать и использовать максимально габаритную мощность. Для этого можно воспользоваться статьей Бирюкова С. СКАЧАТЬ , а можно по мотивам статьи собрать свой собственный стенд для проверки насыщаемости сердечника. Второй способ для меня предпочтительней - для данного стенда я использую ту же микросхему, что и для сварочного аппарата - UC Прежде всего это позволит "пощупать" микросхему живьем, проверить диапазоны регулировок, а установив в стенд панельку для микросхем я смогу проверять данные микросхемы непосредственно перед установкой в сварочный аппарат. Собирать будем следующую схему: Здесь почти классическая схема включения UC На VT1 собран стабилизатор напряжения для самой микросхемы, поскольку диапазон питающих напряжения самого стенда довольно большой. VT1 любой в корпусе ТО с током от 1 А и напряжением К-Э выше 50 В. Кстати о питающих напряжениях - нужен БП с напряжением минимум 20 вольт. Максимальное напряжение не более 42 вольт - для работы голыми руками это еще безопасное напряжение, хотя лучше выше 36 не подниматься. Блок питания должен обеспечивать ток не менее 1 ампера, то есть иметь мощность от 25 Вт и выше. Здесь стоит учитывать, что данный стенд работает по принципу бустера, поэтому суммарно напряжение стабилитронов VD3 и VD4 должно быть как минимум на вольт больше напряжения питания. Превышать разницу более чем на 20 вольт крайне не рекомендуется. В качестве блока питания для стенда можно использовать автомобильное зарядное устройство с классическим трансофрматором, не забыв поставить на выход зарядного пару конденсаторов на мкФ 50В. Регулятор тока зарядки ставим на максимум - больше чем нужно схема не возьмет. Цена от рублей. Транзистор VT2 служит для регулировки подаваемого на индуктивность напряжения, VT3 - формирует импульсы на исследуемой индуктивности, а VT4 - выступает в роли размагничивающего индуктивность устройства, так сказать электронная нагрузка. Резистором R8 - частота преобразования, а R12 подаваемое на дроссель напряжение. Да, да, именно дроссель, поскольку пока у нас нет вторичной обмотки этот кусок трансформатора есть не что иное как самый обычный дроссель. Резисторы R14 и R15 измерительные - с R15 производится контроль тока микросхемой, а с обоих прозводится контроль формы напряжения падения. Используется два резистора для увеличения напряжения падения и меньшего сбора мусора осциллографом - клемма X2. Тестируемы дроссель подключается к клеммам X3, а к клеммам X4 подключается напряжение питания стенда. На схеме показано то, что собрано у меня. Однако эта схема имеет довольно не приятный недостаток - напряжение после транзистора VT2 сильно зависит от нагрузки, поэтому я в своих замерах использовал положение движка R12, при котром транзистор полностью открыт. Если доводить данную схему до ума, то желательно вместо полевика использовать параметрический регулятор напряжения, ну например вот такой: Я что то еще делать с этим стендом не буду - у меня есть ЛАТР и я могу спокойно изменять напряжение питания стенда подключив тестовый, обычный трансформатор через ЛАТР. Единственно, что пришлось добавить - вентилятор. VT4 работает в линейном режиме и греется довольно бодро. Чтобы не перегревать общий радиатор воткнул вентилятор и ограничительными резисторами. Однако проведя несколько тестовых замеров я пришел к выводу, что в стенде можно организовать более наглядную точку для контроля протекающего через индуктивность тока. Для этого в схему был введен дополнительный резистор R16 и как оказалось производить измерения на нем гораздо удобней. Дело в том, что протекающий через катушку ток не меняется мгновенно, то есть если индуктивность не вошла в насыщение, то протекающий через катушку ток будет линейно увеличиваться и так же линейно уменьшаться, отдавая накопленную энергию на электронную нагрузку VT4. Если же ток не изменятеся, то перестает изменяться и падение напряжения на резисторе, то есть треугольная форма напряжения приобретает ровные участки, а это говорит о том, что сердечник однозначно насытился. Для проверки возьмем программу "Старичка" ExcellentIT и сделаем тестовый расчет. СКАЧАТЬ ПРОГРАММУ ExcellentIT Здесь логика довольно простая - я вбиваю параметры сердечника, делаю расчет для преобразователя на IR, а выходное напряжение ставлю равным выходному напряжению своего блока питания. В итоге у меня получается для двух колец К45х28х8 для вторичного напряжения необходимо намотать 12 витков. Начинаем с минимальной частоты - за перегрузку транзистора можно не беспокоится - сработает ограничитель тока. Осциллографом становимся на клеммы Х1, плавно увеличиваем частоту и наблюдаем следующую картинку: Далее составляем пропорцию в Экселе для вычисления количества витков в первичной обмотке. Результат будет существенно отличаться от расчетов в программе, но даем себе отчет, что программа учитывает и время пауз и напряжения падения на силовых транзисторах и выпрямительных диодах. К тому же увеличесние количества витков не приводит к пропорциональному увеличению индуктивность - там квадратичная засимость. Поэтому увеличение количества витков приводит к существенному увеличению индуктивного сопротивления. ПРограмам это тоже учитывает. Рядом строим вторую пропорцию по которой можно будет вычислить нужное количество витков под вторичные напряжения. Перед пропорциями с количеством витков есть еще две таблички с помощью которых можно вычислить количество витков и индуктивность выходного дросселя сварочного аппарата, что для данного устройства тоже довольно важно. Решил все таки дать свободный доступ. Видео, котором идет речь здесь: Текстовый вариант о том как составить данную таблицу и исходные формулы ЗДЕСЬ. С расчетами закончили, но осталась червоточина - схема стенда простая как три копейки, показала вполне приемлемые результаты. Может собрать полноценный стенд с питанием непосредственно от сети ? Но гальваническая связь с сетью это не очень хорошо. Да и удалять накопленную индуктивностью энергию при помощи линейного транзистора тоже не очень хорошо - нужен будет ОЧЕНЬ мощный транзистор с ОГРОМНЫМ радиатором. Ладно, нужно не много подумать Как выяснить насыщаемость сердечника вроде разобрались, выбираем сам сердечник. Уже упоминалось, что искать и покупать Ш-образный феррит лично мне слишком лениво, поэтому Достаю свой ящик с ферритами от строчных трансформаторов и выбираю ферриты одного размера. Затем делаю оправку именно для одного сердечника и мотаю на ней витков - чем больше витков - тем точнее получатся результаты измерений индуктивности. Мне нужно выбрать одинаковые сердечники. Сложив получившиеся в Ш-образную конструкцию делаю оправку и мотаю пробную обмотку. Пересчитав количество витков первички выясняется, что габаритной мощности маловато будет - Бармалеи содержат витков первички. Беру сердечники большего размера - остались от каких то старых заготовок и начинается пара часов тупизма - проверяя середчнки по методике, изложенной в первой части статьи количество витков получается даже больше, чем у счетверенного сердечника, а я использовал шесть коплектов и размер гораздо больше Лезу в программы расчета "Старичка" - он же Денисенко. На всякий случай вбиваю сдвоенный сердечник Ш20х Расчет показывает, что для частоты 30 кГц количество витков первички равно ти. Перед вводом своих новых сердечников пересчитваю площадь круглых краев сердечника и вывожу значения для якобы прямоугольных краев. Расчет делаю для мостовой схемы, поскольку в однотактном преобразователе прикладывается ВСЕ имеющиеся первиное напряжение. Вроде все сходится - с данных сердечников можно взять порядка Вт. Разница в несколько сотен ватт. Правда количество витков первичной обмотки совпадают. Но если количество витков первички одинаковое, то и габаритная мощность дожна быть одинаковая. Еще часик уже повышенного тупизма. Чтобы не пинать посетителей на поиски программ Старичка собрал их в один сборник и упаковал в один архив, который можно СКАЧАТЬ. Внутри архива практически все программы созданные Старичком, которые удалось найти. На каком то форуме тоже видел подобный сборник, но вот на каком чет не припомню. Для решения возникшей проблемы еще раз перечитываю статью Бирюкова Становлюсь осциллографом на резистор в цепи истока и начинаю наблюдать измения формы падения напряжения на разных индуктивностях. На не больших индуктивностях действительно происходит перегиб формы напряжения падения на истоковом резисторе, а вот уже на счетверенном сердечнике от ТДКС она линейна хоть на частоте 17 кГц, хоть на кГц. В принципе можно использовать данные из программ-калькуляторов, но на стенд возлагались надежды и они реально рушаться. Не спешно откидываю витки на сшестеренном сердечнике и прогняю его на стенде наблюдая за изменниями осциллограм. Реально какая то фигня! Ток ограничивается стендом еще до того как ничается изгибаться кривая напряжения Малой кровью обойтись не получается - даже увеличив ограничение тока до 1А падение напряжение на истоковм резисторе все равно линейное, но появляется закономерность - дойдя до определенной частоты ораничение тока выключается и длительность импульса начинает меняться. Все таки для этого стенда индуктивность слишком большая Остается проверить мои подозрения и намотать пробную обмотку на вольт и Достаю с полки своего монстра - давненько я им не пользовался. Описание данного стенда с чертежом печатной платы ЗДЕСЬ. Прекрасно понимаю, что собирать подобный стенд ради сборки сварочного аппарата занятие довольно трудоемкое, поэтому приведенные результы измерений это лишь промежуточный результат, чтобы иметь хоть какое представление о том, какие сердечники и как можно использовать. Далее, в процессе сборки, когда уже будет готова печатная плата на рабочий сварочник я еще раз перепроверю сделанные в этих замерах результаты и попытаюсь разаработать методику безошибочной намотки силового трансформатора с использованием готовой платы как проверочного стенда. Ведь маленький стенд вполне работоспособен, но только для маленьких индуктивностей. Можно конечно попробовать поиграться с количеством витков, уменьшая их до 2-х или 3-х, но даже на перемагничивание такого массивного сердечника требуется не мало энергии и блоком питания в 1 А уже не отделаешься. Методика с использованием стенда перепроверилась при использовании традиционного сердечника Ш16х20, сложенный вдвое. На всякий случай размеры Ш-образных отечественных сердечников и рекомендуемые замены на импортные сложил ЗДЕСЬ. Так что с сердечниками ситуация хоть и прояснилась, но на всякий случай результаты будут перепроверены уже на однотактном инверторе. Пока же начнем изготовление жгута для трансформатора сварочного аппарата. Можно свить жгут, можно склеить ленту. Мне всегда больше нравились ленты - по трудоемкости они конечно превосходят жгуты, но плотность намотки гораздо выше. ПВ - один из наиболее важных параметров сварочных аппаратов, ПВ это П родолжительность В ключения, то есть время не прерывной сварки на токах близких к максимальным. Экономят на системах охлаждения, но я то вроде собрался делать сварочный аппарат для себя, следовательно я могу себе позволить и гораздо большие площади теплоотводов для полупроводников, а для трансформатора сделать более легкий тепловой режим СЕЧЕНИЕ ПРОВОДА, ММ 2. ПОИСК РАЗЪЕМОВ ДЛЯ СВАРОЧНЫХ АППАРАТОВ.


Сварочный инвертор своими руками – экономим на покупке дорогостоящего оборудования


Инвертор является достаточно сложным инструментом для сварки, который заслужил в последнее время огромную популярность. Отличные рабочие характеристики обусловлены большим количеством технических узлов, в общей массе составляющей одно устройство. Чтобы добиться высокого качества получаемого шва, надежности работы и хороших технических характеристик мировые производители стараются внедрять новые разработки и делать мощную, но при этом экономичную технику. Но оказывается, что можно сделать самый простой сварочный инвертор своими руками. Естественно, что здесь не стоит ожидать высоких современных характеристик от таких устройств. Но вполне возможно создать все самостоятельно, так как все комплектующие для этого находятся в свободном доступе и при наличии полного комплекта и подходящей схемы можно создать недорогую компактную модель. Здесь нужно осуществить правильный подбор, исходя из расчетов мощности и других параметров. Иными словами, все детали должны быть взаимосовместимы друг с другом, как по своему типу, так и по параметрам. К примеру, самой уязвимой частью устройства являются транзисторы, поэтому, к их выбору стоит подходить с особым вниманием. Схема простого сварочного инвертора помогает определиться, что именно должно входить в состав устройства. Естественно, что это является не единственным вариантом и возможны замены. Здесь представлена наиболее простая для самостоятельного воплощения схема. Перед тем как начать делать самый простой инвертор сварочный, нужно рассчитать его мощность. Это делается путем умножения силы тока , которой должно обладать устройство, на напряжение, при котором будет гореть дуга. К примеру, для тока в А, который будет возможен на напряжении дуги в 24 В, мощность должна быть Вт. Таким образом, мощность перекачиваемая транзисторами должна составлять Вт. Исходя из этой величины, можно определить силу тока, коммутируемую транзисторами во время работы. Чтобы это осуществить, следует найти разделить мощность на напряжение в сети. Чтобы при 20 А можно было поддерживать напряжение в В, в схеме должен присутствовать фильтр емкостью мкФ. Если через транзисторы проходит большой ток, то он начинает нагревать их. Как правило, скорость отвода тепла при помощи радиаторов является недостаточной, а перегревание приведет к разрушению техники. Чтобы избежать подобных неприятностей, транзисторы стоит подбирать с запасом, чтобы их рабочий ток при градусов Цельсия составлял, как минимум, 20 А. Простой в повторении и изготовлении сварочный аппарат должен иметь напряжение на транзисторах не более, чем напряжение в источнике питания. Очень важным параметром является частота транзисторов. Для представленных выше параметров подходят изделия с частотой в кГц. Напряжение на них должно быть В. Это могут быть как обыкновенные полевые, так и IGBT транзисторы. Единственной проблемой при их установке является отсутствие специального крепежа. Чтобы транзистор нормально работал, между его открытием и закрытием должна выдерживаться пауза. Время паузы должно быть около 1,2 мс. Исключением можно считать только транзисторы Mosfet, пауза в которых допускается в 0,5 мс. Для того, чтобы создать простой сварочный инвертор на одном транзисторе, следует иметь следующий набор инструментов:. Это основные инструменты, при помощи которых происходит сборка, контроль и измерения. Помимо этого следует иметь еще материалы, которые нужны будут для создания самого аппарата. Следует подать ток на схему, чтобы проверить, как срабатывает реле замыкания резистора. Далее идет проверка платы ШИМ, есть ли в ней прямоугольные импульсы, которые могут появляться после того, как сработает реле. Нужно убедиться, что напряжение на транзисторах не превышает допустимое, иначе все это может привести к поломке. Затем питание подается на диодный мост, чтобы проверить правильность его изготовления и работоспособности. Во время настройке нужно убедиться в правильности намотки трансформатора, а также в его корректном подключении и возможности управлять им. Это один из основных элементов, задающих регулировку параметров, но в то же время самый сложный по исполнению за счет наличия обмотки. Все процедуры должны производиться только при отключенном электропитании. Каждую деталь желательно измерить заранее, чтобы во время включения она не сломалась из-за перенапряжения. Во время работы следует соблюдать основные правила электробезопасности. Ультразвуковая сварка — это процесс соединения различного материала, при котором. Сварка считается одним из самых надежных способов получения качественного неразъемного. В профессиональном строительстве при возведении металлоконструкций, а также при создании. Другое Защитные газы Материалы Оборудование Припой для пайки Разное Сварка алюминия Сварка металла Сварка нержавейки Сварочная проволока Сварочные аппараты Сварочные маски Термическая сварка Термомеханическая сварка Техника безопасности Технология Трансформаторы Флюс для пайки Холодная сварка Электроды. Для показа облака WP-Cumulus необходим Flash Player. Материалы Материалы Электроды Проволока Припои для сварки Защитные газы Флюс для пайки Оборудование Оборудование Сварочные аппараты Сварочные маски Трансформаторы Разное Технология Технология Сварка алюминия Сварка нержавейки Холодная сварка Сварка металла Термическая сварка Термомеханическая сварка Другое Техника безопасности Техника безопасности. Словарь Вопрос эксперту Каталог Терминология в сварке. Проведем экспертную оценку моделей! Я ищу Сварочные работы Сварочное оборудование. Город Екатеринбург Красноярск Пермь Сыктывкар Иркутск Тула Нижний Тагил Санкт-Петербург Новосибирск Челябинск Архангельск Хабаровск Самара Уфа Воронеж Нижний Новгород Смоленск Чебоксары Казань Барнаул Тюмень Москва. Главная Оборудование Сварочные аппараты Самый простой сварочный инвертор своими руками. Самый простой сварочный инвертор своими руками. Простой сварочный инвертор своими руками. Проверка напряжения на транзисторе. Намотанный вручную трансформатор в витков. Поляризация электродов На сегодня химические источники тока находят все большее применение во. Ультразвуковая сварка Ультразвуковая сварка — это процесс соединения различного материала, при котором. Термитная сварка Термитная сварка — это один из многочисленных способов варки. Выбор сварочного тока в зависимости от диаметра электрода Сварка считается одним из самых надежных способов получения качественного неразъемного. Технические характеристики припоя ПОС Чтобы металл лучше спаивался, во время пайки используют припои, которые. Катет сварного шва В профессиональном строительстве при возведении металлоконструкций, а также при создании. Другое Защитные газы Материалы Оборудование Припой для пайки Разное Сварка алюминия Сварка металла Сварка нержавейки Сварочная проволока Сварочные аппараты Сварочные маски Термическая сварка Термомеханическая сварка Техника безопасности Технология Трансформаторы Флюс для пайки Холодная сварка Электроды Для показа облака WP-Cumulus необходим Flash Player. Какие электроды вы используете? Какую сварку плавлением вы используете? Рубрики Материалы Оборудование Технология Техника безопасности. Сервисы Вопрос эксперту Словарь Каталог. Редакция О сайте Обратная связь Карта сайта.


Классификация и технические характеристики средств проводной связи
Сергиев посад тонус новости видео
Структура кадрового аудита
Битва за средиземье редактор карт
Обозначение нефти в мт4
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment