sf_crime_15.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
fig = make_subplots( | |
rows=1, cols=2, | |
subplot_titles=( | |
"Classwise Score Distributions", | |
"Train vs Validation Score Distributions" | |
) | |
) | |
# class-wise score distributions | |
fig_distplots = ff.create_distplot( | |
[y_pred[~mask_positive_class], y_pred[mask_positive_class]], | |
["Negative", "Positive"], | |
show_hist=False, show_rug=False, | |
) | |
for trace in fig_distplots.select_traces(): | |
fig.add_trace(trace, row=1, col=1) | |
fig.update_xaxes(range=(0, 1), row=1, col=1) | |
fig['layout']['xaxis2']['title'] = dict(text='Score') | |
fig['layout']['yaxis2']['title'] = dict(text='P(Score)') | |
# train vs validation score distributions | |
fig_distplots = ff.create_distplot( | |
[y_train_pred, y_pred], | |
["Training", "Validation"], | |
show_hist=False, show_rug=False | |
) | |
for trace in fig_distplots.select_traces(): | |
fig.add_trace(trace, row=1, col=2) | |
fig.update_xaxes(range=(0, 1), row=1, col=2) | |
fig['layout']['xaxis2']['title'] = dict(text='Score') | |
fig['layout']['yaxis2']['title'] = dict(text='P(Score)') | |
fig.update_layout(showlegend=False) | |
fig.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment