Create a gist now

Instantly share code, notes, and snippets.

PageRank for text summarization
import networkx as nx
import numpy as np
from nltk.tokenize.punkt import PunktSentenceTokenizer
from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
def textrank(document):
sentence_tokenizer = PunktSentenceTokenizer()
sentences = sentence_tokenizer.tokenize(document)
bow_matrix = CountVectorizer().fit_transform(sentences)
normalized = TfidfTransformer().fit_transform(bow_matrix)
similarity_graph = normalized * normalized.T
nx_graph = nx.from_scipy_sparse_matrix(similarity_graph)
scores = nx.pagerank(nx_graph)
return sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment